σ -Bond Metathesis Reactions for d⁰ Metal-Silicon Bonds That Produce Zirconocene and Hafnocene Hydrosilyl Complexes

Hee-Gweon Woo, Richard H. Heyn, and T. D. Tilley*

Contribution from the Department of Chemistry, 0506, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093-0506. Received January 6, 1992

Abstract: Reactions of zirconocene and hafnocene silyl derivatives $CpCp'M(SiR_3)Cl(Cp = \eta^5-C_5H_5; Cp' = Cp \text{ or } Cp^*, Cp^*)$ = η^5 -C₅Me₅; M = Zr or Hf; R = Me or SiMe₃) with hydrosilanes have been investigated. The observed products depend on the nature of the starting materials, since in some cases the initial σ -bond metathesis products react further via dehydrocoupling processes. For example, Cp₂Zr(SiMe₃)Cl reacts with PhSiH₃ to give the direct products Me₃SiH and Cp₂Zr(SiH₂Ph)Cl, which then combines rapidly with PhSiH₁ to produce [Cp₂ZrHCl], PhH₂Si-SiH₂Ph, and PhH₂Si-SiHPh-SiH₂Ph. Thus, hydrosilyl complexes obtained from such reactions can be contaminated by significant quantities of the corresponding hydride. The σ -bond metathesis reactions of CpCp*Hf[Si(SiMe_3)_3]Cl (2) with hydrosilanes RR'SiH₂ cleanly give the isolable metal silv derivatives $CpCp^{+}Hf(SiHRR')Cl(SiHRR' = SiH_2Ph(8), SiH_2(p-Tol)(9), SiH_2(p-MeOC_6H_4)(10), SiH_2(p-FC_6H_4)(11), SiH_2Mes$ $(12, Mes = 2,4,6-Me_3C_6H_2), SiH_2CH_2Ph (13), SiH_2Cy (14), SiHPh_2 (15), SiHMePh (16, as a 7:5 mixture of diastereomers),$ and SiHPhSiH₂Ph (17, as a 1:1 mixture of diastereomers)). In general, primary or secondary silanes will undergo such reactions, provided that a less sterically hindered silyl ligand is introduced at hafnium. Tertiary silanes such as Me,SiH and Et,SiH do not react under comparable conditions. Reactions of 2 with bis(silyl) compounds have provided the bimetallic complex 1,4-CpCp*(Cl)HfSiH₂C₆H₄SiH₂Hf(Cl)CpCp* (19) and the thiophene derivative 2,5-CpCp*(Cl)HfSiH₂(C₄H₂S)SiH₂Hf-(Cl)CpCp^{*} (20). The thermal (dark) reaction of 2 with PhSiH₃ obeys a second-order rate law, rate = k[2][PhSiH₃], with $\Delta H^* = 16.4$ (7) kcal mol⁻¹, $\Delta S^* = -27$ (2) eu, and $k_{\rm H}/k_{\rm D}$ (70 °C) = 2.5 (1). These parameters suggest that the above σ -bond metathesis reactions involve four-center transition states similar to those that have been proposed for "hydrocarbon activation" reactions of d^0 metal complexes. Visible light accelerates the reactions of 2 with hydrosilanes, via excitation of a low-intensity transition at 405 nm ($\epsilon = 445 \text{ dm}^3 \text{ mol}^{-1} \text{ cm}^{-1}$), which appears to have considerable silul-to-metal charge-transfer character. The quantum yield for the reaction of 2 with 1 or 20 equiv of PhSiH₃ is 1.0 ± 0.1 . Use of radical traps failed to provide evidence for intermediate radicals in this photochemistry. Possible mechanisms for the observed photochemical conversions are discussed. Reactions of 2 with alkoxyhydrosilanes $HSi(OMe)_2R'$ provide routes to the new complexes CpCp*Hf(SiH₂Me)Cl (23, R' = Me) and CpCp*Hf(SiH₃)Cl (24, R' = OMe). These reactions appear to proceed via initial, metal-catalyzed redistribution of the alkoxyhydrosilanes (e.g., HSiMe(OMe)₂ is redistributed to MeSi(OMe)₃ and MeSiH₃), followed by trapping of the new hydrosilane by 2. The Hf-Si distance observed for 2 (2.881 (4) and 2.888 (4) Å for the two independent molecules) is much longer than that observed for 8 (2.729 (3) Å), apparently because of greater ligand-ligand repulsion in 2.

Many of the recent advances in transition-metal silicon chemistry have resulted from investigations with the early transition metals.¹ These studies have led to discovery of new classes of transition-metal complexes,² new methods for the activation of small molecules via migratory insertion into a M-Si bond,³ new hydrosilation catalysts,⁴ and dehydrocoupling reactions for hydrosilanes, which can produce oligomeric or polymeric polysilanes.⁵ Historically, the chemistry of d⁰ metal-silicon bonds has developed rather slowly compared to that of other types of transition metal-silicon bonds, primarily because of difficulties encountered in the synthesis of d⁰ metal silyl complexes. Early-transition-metal silyl complexes have been obtained primarily via reaction of a silyl anion source (such as Al(SiMe₃)₃·OEt₂,⁶ (THF)₃LiSiPh₃,⁷ or (THF)₃LiSi(SiMe₃)₃^{3c,g,i,8}) with a metal halide complex. This method is therefore severely limited, since relatively few silyl anion reagents are available. For example, hydrosilyl derivatives (with α -hydrogens, L_nM-SiHRR') are not readily accessible via this route. One exception to this generalization is the synthesis of zirconocene derivatives of SiHMes₂ (Mes = mesityl), which employs the isolable reagent (THF)₂LiSiHMes₂.⁹ Hydrosilyl complexes of the early transition metals are of interest with respect to their proposed involvement in metal-catalyzed dehydropolymerizations.⁵

Recently, a number of groups have reported routes to early metal silyl complexes based on oxidative addition of an Si-H bond to a low-valent metal complex.^{4g,10} In addition, Harrod and

(6) (a) Rösch, L.; Altnau, G.; Erb, W.; Pickardt, J.; Bruncks, N. J. Organomet. Chem. 1980, 197, 51. (b) Tilley, T. D. Organometallics 1985, 4, 1452. (c) Arnold, J.; Shina, D. N.; Tilley, T. D.; Arif, A. M. Organometallics 1986, 5, 2037.

(7) (a) Kingston, B. M.; Lappert, M. F. J. Chem. Soc., Dalton Trans. 1972, 69. (b) Woo, H.-G.; Freeman, W. P.; Tilley, T. D. Organometallics, in press.

(8) (a) Arnold, J.; Roddick, D. M.; Tilley, T. D.; Rheingold, A. L.; Geib, S. J. Inorg. Chem. 1988, 27, 3510. (b) Heyn, R. H.; Tilley, T. D. Inorg. Chem. 1989, 28, 1768.

(9) Roddick, D. M.; Heyn, R. H.; Tilley, T. D. Organometallics 1989, 8, 324.

(10) (a) Buchwald, S. L.; Kreutzer, K. A.; Spattenstein, E. Abstracts of Papers, 199th National Meeting of the American Chemical Society, Boston, MA, April 1990; American Chemical Society: Washington, DC, 1990; INOR 421. (b) Kreutzer, K. A.; Fisher, R. A.; Davis, W. M.; Spattenstein, E.; Buchwald, S. L. Organometallics 1991, 10, 4031. (c) Parkin, G.; Bunel, E.; Burger, B. J.; Trimmer, M. S.; Van Assett, A.; Bercaw, J. E. J. Mol. Catal. 1987, 41, 21. (d) Berry, D. H.; Jiang, Q. J. Am. Chem. Soc. 1989, 111, 8049. (e) Berry, D. H.; Koloski, T. S.; Carroll, P. J. Organometallics 1990, 9, 2952.

For recent reviews of transition-metal silicon chemistry, see: (a) Tilley,
 T. D. In *The Chemistry of Organic Silicon Compounds*; Patai, S., Rappoport,
 Z., Eds.; Wiley: New York, 1989; Chapter 24, p 1415. (b) Tilley, T. D. In
 The Silicon-Heteroatom Bond; Patai, S., Rappoport, Z., Eds.; Wiley: New
 York, 1991; Chapters 9 and 10, pp 245, 309.
 (2) (a) Aitken, C. T.; Harrod, J. F.; Samuel, E. J. Am. Chem. Soc. 1986,

^{(2) (}a) Aitken, C. T.; Harrod, J. F.; Samuel, E. J. Am. Chem. Soc. 1986, 108, 4059. (b) Procopio, L. J.; Carroll, P. J.; Berry, D. H. J. Am. Chem. Soc. 1991, 113, 1870.

^{(3) (}a) Campion, B. K.; Heyn, R. H.; Tilley, T. D. Inorg. Chem. 1990, 29, 4355.
(b) Woo, H.-G.; Tilley, T. D. J. Organomet. Chem. 1990, 393, C6. (c) Campion, B. K.; Heyn, R. H.; Tilley, T. D. J. Am. Chem. Soc. 1990, 112, 2011.
(d) Arnold, J.; Engeler, M. P.; Elsner, F. H.; Heyn, R. H.; Tilley, T. D. Organometallics 1989, 8, 2284. (e) Roddick, D. M.; Heyn, R. H.; Tilley, T. D. Organometallics 1989, 8, 324. (f) Arnold, J.; Tilley, T. D.; Rheingold, A. L.; Geib, S. J.; Arif, A. M. J. Am. Chem. Soc. 1989, 111, 149. (g) Elsner, F. H.; Tilley, T. D.; Rheingold, A. L.; Geib, S. J. J. Organomet. Chem. 1988, 358, 169. (h) Arnold, J.; Tilley, T. D. J. Am. Chem. Soc. 1987, 109, 3318.
(i) Campion, B. K.; Falk, J.; Tilley, T. D. J. Am. Chem. Soc. 1987, 109, 2049 and references in the above.

⁽i) Campion, B. K.; Falk, J.; Tilley, T. D. J. Am. Chem. Soc. 1987, 109, 2049 and references in the above.
(4) (a) Harrod, J. F.; Yun, S. S. Organometallics 1987, 6, 1381. (b) Harrod, J. F. In Inorganic and Organometallic Polymers; Zeldin, M., Wynne, K. J., Allcock, H. R., Eds.; ACS Symposium Series 360; American Chemical Society: Washington, DC, 1988; p 93. (c) Nakano, T.; Nagai, Y. Chem. Lett. 1988, 481. (d) Berk, S. C.; Kreutzer, K. A.; Buchwald, S. L. J. Am. Chem. Soc. 1991, 113, 5093. (c) Kesti, M. R.; Abdurahman, M.; Waymouth, R. M. J. Organomet. Chem. 1991, 417, C12. (f) Sakakura, T.; Lautenschleger, H. J.; Tanaka, M. J. Chem. Soc., Chem. Commun. 1991, 40. (g) Takahashi, T.; Hasegawa, M.; Suzuki, N.; Saburi, M.; Rousset, C. J.; Fanwick, P. E.; Negishi, E. J. Am. Chem. Soc. 1991, 113, 8564.

^{1.;} riasegawa, M.; Suzuki, N.; Saburi, M.; Rousset, C. J.; Fanwick, P. E.; Negishi, E. J. Am. Chem. Soc. 1991, 113, 8564. (5) (a) Tilley, T. D. Comments Inorg. Chem. 1990, 10, 37. (b) Harrod, J. F.; Mu, Y.; Samuel, E. Polyhedron 1991, 11, 1239. (c) Corey, J. In Advances in Silicon Chemistry; Larson, G., Ed.; JAI Press, Inc.: Greenwich, CT, 1991; Vol. 1, p 327. (d) Laine, R. M. In Aspects of Homogeneous Catalysis; Ugo, R., Ed.; Kluwer Academic Publishers: Amsterdam, 1990; p 37.

Wavelength (nm)

Figure 1. Comparison of the visible electronic spectra for CpCp*Zr-[Si(SiMe₃)₃]Cl (1, λ = 460 nm) and CpCp*Hf[Si(SiMe₃)₃]Cl (2, λ = 405 nm).

co-workers have prepared d¹ titanium(III) silyl complexes of the type Cp₂Ti(SiHRR')(L), via reaction of a silane RR'SiH₂ with Cp₂TiMe₂ in the presence of a donor ligand.¹¹ Here we report the synthesis and characterization of d⁰ hydrosilyl complexes via " σ -bond metathesis"¹² reactions of known silyl complexes with hydrosilanes. In particular, these reactions have been used to obtain a family of stable hafnium hydrosilyl complexes of the type CpCp*Hf(SiHRR')Cl (Cp* = η^5 -C₅Me₅). We have also observed that alkoxysilanes may serve as reagents for the synthesis of hydrosilyl derivatives via "redistribution chemistry", as in the formation of CpCp*Hf(SiH₃)Cl from reaction of CpCp*Hf[Si-(SiMe₃)₃]Cl with excess HSi(OMe)₃. Some of this work has been communicated.¹³

Results

Electronic Properties of Zirconium and Hafnium Silyl Complexes. In general, zirconocene silvl derivatives are orange to dark red in color. The analogous hafnium compounds are yellow. These colors seem to be associated with the silvl ligands since, in general, related alkyl derivatives are colorless. To examine the source of these colors in greater detail, electronic spectra for series of $CpCp^*M[Si(SiMe_3)_3]X$ (M = Zr, Hf) complexes were recorded. In addition to the envelope of UV absorptions usually associated with d⁰ metallocene complexes, CpCp*M[Si(SiMe₃)₃]Cl (1, M = Zr,^{3g} and 2, M = Hf) exhibit low-intensity absorptions in pentane at 461 (1, $\epsilon = 500 \text{ dm}^3 \text{ mol}^{-1} \text{ cm}^{-1}$) and 405 nm (2, $\epsilon =$ 445 dm³ mol⁻¹ cm⁻¹) (Figure 1). Upon substitution of the chloro ligands for methyl groups, these transitions shift to higher energy: 435 ($\epsilon = 250 \text{ dm}^3 \text{ mol}^{-1} \text{ cm}^{-1}$) and 398 nm ($\epsilon = 250 \text{ dm}^3 \text{ mol}^{-1}$ cm⁻¹), respectively, for CpCp*M[Si(SiMe₃)₃]Me (M = Zr and Hf). Given the observed changes in spectra with variations in the metal and the ligand set and the fact that comparable visible absorptions are not observed in the spectra of related alkyl derivatives (e.g., Cp₂ZrMeCl), these transitions may be characterized as silvl ligand-to-metal charge-transfer transitions.

As described previously^{3d} and below, these silyl-to-metal charge-transfer transitions appear to be associated with photochemical reactions of the M-Si bonds. Exposure of a toluene- d_8 solution of 1 to direct light from a high-intensity desk lamp results in clean conversion over 2 h to $HSi(SiMe_3)_3$ and $(\eta^5:\eta^5-\eta^5)$ $C_{10}H_8$ [Cp*Zr(μ -Cl)]₂ (by ¹H NMR spectroscopy).¹⁴ For comparison, the thermolysis of 1 (toluene- d_8 , 95 °C, 2 h) produces HSi(SiMe₃)₃ (quantitatively) and $(\eta^5:\eta^5-C_{10}H_8)[Cp^*Zr(\mu-Cl)]_2$ in ca. 50% yield, by ¹H NMR spectroscopy. Both reactions therefore involve abstraction of a cyclopentadienyl hydrogen atom by the silyl ligand, but further details of the mechanism remain obscure. A concerted process, as has been proposed for Cp₃ThR $(R = H, {}^{i}Pr, {}^{n}Bu)$ compounds,¹⁵ or a radical mechanism can be envisioned. However, a radical mechanism seems less likely given the strong preference for abstraction of hydrogen from a Cp ring over abstraction of hydrogen from the Cp* ligand or the toluene solvent. Toluene solutions of 1 in the dark do not produce an ESR signal. However, irradiation of the sample with light from a high-intensity desk lamp gives rise within minutes to a weak signal at $g_{av} = 1.980$. After removal of the light source, the signal decays and completely disappears within a few minutes. This signal may be attributed to a Zr(III) species,¹⁶ even though hyperfine splitting by ⁹¹Zr (11.3% natural abundance, $I = \frac{5}{2}$) was not observed, probably because of the low signal-to-noise ratio. Therefore it appears that photochemical Zr-Si bond homolysis may occur to some extent, but given the high sensitivity of the ESR experiment, it is not clear how important this process is.

Preparation of d⁰ Hydrosilyl Complexes via σ **-Bond Metathesis.** The ultimate products that are observed from reaction of zirconocene or hafnocene silyl derivatives with hydrosilanes depend critically on the nature of the reactants, which can allow further reactions of the initial products via dehydrocoupling processes. Also, if the reacting silicon centers are too sterically encumbered, no reaction occurs. Thus in general, zirconocene and hafnocene silyl derivatives do not react with bulky silanes such as Me₃SiH, Et₃SiH, 'Bu₂SiH₂, or CyMeSiH₂.

In reactions of CpCp'M(SiR₃)Cl (Cp' = Cp or Cp^{*}; M = Zr or Hf; R = Me or SiMe₃) derivatives with primary silanes, a commonly observed side product is the corresponding metallocene hydride CpCp'MHCl. For example, Cp₂Zr(SiMe₃)Cl^{6b} and Cp₂Zr[Si(SiMe₃)₃]Cl³ⁱ react with phenylsilane according to eq 1 to produce the direct metathesis products 3 and HSiR₃, along with side products from further silane dehydrocoupling processes ([Cp₂ZrHCl]_n, PhH₂SiSiH₂Ph, and PhH₂SiSiHPhSiH₂Ph). At

$$Cp_{2}Zr < Classical Simple Simple$$

complete conversion of starting material, these reaction mixtures contain ca. 80% 3 and ca. 10% $[Cp_2ZrHCl]_n$ (by NMR spectroscopy, based on the Zr starting material). The primary silyl derivative 3 was identified by comparing its NMR spectrum with spectra for related complexes that were isolated and thoroughly characterized. Reaction of $Cp_2Hf[Si(SiMe_3)_3]Cl^{3i}$ with 3 equiv of phenylsilane proceeds similarly, and at 50% conversion (2-h reaction time), resonances assigned to HSi(SiMe_3)_3, Cp_2Hf-(SiH_2Ph)Cl (4, ca. 5%), $[Cp_2HfHCl]_n$ (ca. 10%), PhH₂SiSiH₂Ph, PhH₂SiSiHPhSiH₂Ph, and PhH₂Si(SiHPh)₂SiH₂Ph were identified (the latter three silanes were present in a 2:5:1 ratio). If bulkier silanes are used in the reaction with $Cp_2Hf[Si(SiMe_3)_3]Cl$, higher yields of the silylhafnium compound can be obtained, but the products are still often contaminated by $[Cp_2HfHCl]_n$. For

⁽¹¹⁾ Samuel, E.; Mu, Y.; Harrod, J. F.; Dromzee, Y.; Jeannin, Y. J. Am. Chem. Soc. 1990, 112, 3435.

⁽¹²⁾ Thompson, M. E.; Baxter, S. M.; Bulls, A. R.; Burger, B. J.; Nolan, M. C.; Santarsiero, B. D.; Schaefer, W. P.; Bercaw, J. E. J. Am. Chem. Soc. **1987**, 109, 203.

^{(13) (}a) Woo, H.-G.; Tilley, T. D. J. Am. Chem. Soc. 1989, 111, 3757.
(b) Woo, H.-G.; Tilley, T. D. J. Am. Chem. Soc. 1989, 111, 8043.

⁽¹⁴⁾ Identification of $(\eta^{5}:\eta^{5}-C_{10}H_{8})[Cp^{*}Zr(\mu-Cl)]_{2}$ is based on comparison of its distinctive ¹H NMR spectrum [benzene- d_{6} , δ 1.88 (s, 30 H, Cp^{*}), 4.07 (pseudotriplet, $J_{obsd} = 2.7$ Hz, 4 H, $C_{10}H_{8}$), 4.79 (pseudotriplet, $J_{obsd} = 2.7$ Hz, 4 H, $C_{10}H_{8}$)] with the spectrum for $(\eta^{5}:\eta^{5}-C_{10}H_{8})[CpZr(\mu-Cl)]_{2}$ (Gambarotta, S.; Chiang, M. Y. Organometallics 1987, 6, 897). (15) Marks, T. J. Acc. Chem. Res. 1976, 9, 223 and references therein.

 ⁽¹⁵⁾ Marks, T. J. Acc. Chem. Res. 1976, 9, 223 and references therein.
 (16) Hudson, A.; Lappert, M. F.; Pichon, R. J. Chem. Soc., Chem. Commun. 1983, 374.

example, the reaction of $Cp_2Hf[Si(SiMe_3)_3]Cl$ with $CySiH_3$ (Cy = cyclohexyl) allowed isolation of a yellow crystalline material that proved to be a 1:1 mixture of $Cp_2Hf(SiH_2Cy)Cl$ (5) and $[Cp_2HfHCl]_n$, and similarly $Cp_2Hf(SiHPh_2)Cl$ (6) was obtained with ca. 10% of the hydride impurity.

In the dark, benzene- d_6 solutions of 1 react with PhSiH₃ over 6 h to give four products identified by ¹H NMR spectroscopy (eq 2). Early in the reaction, the major products are zirconium silyl

$$CpCp^{*}Zr \underbrace{\overset{Si(SiMe_{3})_{3}}{CI}}_{I} + PhSiH_{3} \xrightarrow{}$$

$$1$$

$$CpCp^{*}Zr \underbrace{\overset{SiH_{2}Ph}{CI}}_{CI} + HSi(SiMe_{3})_{3} \qquad (2)$$

$$7$$

$$\underbrace{}_{L} CpCp^{*}ZrHCI + (-SiHPh-)_{n}$$

7 and HSi(SiMe₃)₃. As the reaction proceeds to completion, 7 decomposes to the hydride CpCp*ZrHCl¹⁷ and a mixture of polysilanes. Broad resonances for the polysilanes were assigned on the basis of comparisons to spectra for isolated $(-SiHPh-)_n$ polymer obtained by other methods.^{2a,4b,18} In the presence of fluorescent room light, the reaction between 1 and PhSiH₃ is complete within 5 min and gives 7 and HSi(SiMe₃)₃ cleanly. Compound 7 then slowly decomposes to CpCp*ZrHCl and $(-SiHPh-)_n$.

Because σ -bond metathesis reactions of CpCp*Hf[Si-(SiMe₃)₃]Cl (2) cleanly give more stable metal silvl derivatives, they have been examined in more detail. As expected, the thermal (dark) reaction of 2 with 1 equiv of PhSiH₃ is much slower than the corresponding reaction observed for 1 (complete reaction after 1-2 days at room temperature). With illumination by fluorescent room lighting, this reaction is complete within 1 h in pentane or benzene solution, giving quantitative conversion to the σ -bond metathesis products CpCp*Hf(SiH₂Ph)Cl (8) and HSi(SiMe₃)₃ (eq 3). The reaction is somewhat slower in diethyl ether or tetrahydrofuran. In contrast to 7, yellow crystalline 8 is stable indefinitely as a solid at room temperature under an inert atmosphere. The ¹H and ²⁹Si NMR spectra for this compound are shown in Figures 2 and 3, respectively. NMR chemical shifts for the diastereotopic hydrogens on the silicon (δ 4.68, 5.14; $^{2}J_{HH}$ = 1.2 Hz) and the low ${}^{1}J_{SiH}$ coupling constant (155 Hz) are consistent with bonding of the silyl group to a chiral, d⁰ metal center.⁹

$$CpCp^{\star}Hf \underbrace{\stackrel{Si(SiMe_3)_3}{Cl}}_{2} + PhSiH_3 \xrightarrow{}_{CpCp^{\star}Hf} \underbrace{\stackrel{SiH_2Ph}{Cl}}_{Cl} + HSi(SiMe_3)_3 \quad (3)$$

Other new hafnium silyl derivatives have been obtained by reaction of 2 with 1 equiv of a primary or secondary silane (RSiH₃, R = p-Tol, p-MeOC₆H₄, p-FC₆H₄, 2,4,6-Me₃C₆H₂ (Mes), CH₂Ph, and Cy; Ph₂SiH₂; PhMeSiH₂; PhH₂SiSiH₂Ph), under the influence of ambient room light. These reactions are quantitative by ¹H NMR spectroscopy, and isolated yields range from 65 to 75%. For CpCp*Hf(SiHPhMe)Cl (16), a 7:5 mixture of diastereomers was observed, while CpCp*Hf(SiHPhSiH₂Ph)Cl (17) was produced as a 1:1 mixture of diastereomers. The rates of these photochemical reactions are quite sensitive to steric effects. Secondary silanes and sterically hindered primary silanes such as MesSiH₃ react sluggishly (over 1-2 days for 1:1 reactions) in the presence of room light. Tertiary silanes such as Me₃SiH and Et₃SiH do not react under analogous conditions. In general, we have found that hafnium silyls CpCp*Hf(SiRR'R")Cl undergo

Figure 2. ¹H NMR spectrum for CpCp*Hf(SiH₂Ph)Cl (8). Splitting of the diastereotopic SiH₂ hydrogens into an AB pattern is apparent in high-resolution spectra ($J_{HH} = 1.2$ Hz).

Figure 3. ²⁹Si NMR spectrum for CpCp*Hf(SiH₂Ph)Cl (8) at 99.3 MHz.

clean σ -bond metathesis reactions with primary or secondary silanes that introduce a smaller silyl ligand. The reaction of **2** with HSiCl₃ appears to take a completely different course, quantitatively producing CpCp*HfCl₂ but only a 4% yield of HSi(SiMe₃)₃, along with unidentified silicon products.

Reaction of 2 with bis(silyl) derivatives provides a convenient means for preparing bimetallic silyl complexes. Thus, 2 reacts with 0.5 equiv of p-H₃SiC₆H₄SiH₃ to afford the bimetallic complex 19 (eq 4). The 1:1 reaction of these species allowed observation (by NMR spectroscopy) of the intermediate monohafnium complex CpCp*Hf(SiH₂C₆H₄SiH₃)Cl (18). Complexes analogous

⁽¹⁷⁾ Woo, H.-G.; Walzer, J. F.; Tilley, T. D. J. Am. Chem. Soc., submitted for publication.

^{(18) (}a) Aitken, C.; Harrod, J. F.; Gill, U. S. Can. J. Chem. 1987, 65, 1804. (b) Aitken, C.; Harrod, J. F.; Samuel, E. Can. J. Chem. 1986, 64, 1677.

Table I	29Si NMR	Data for	Zirconium and	Hafnium	Silvl C	`omplexes
I ADIC I.		Data IUI	Zircomun and	Haimum	SILVI C	JUINDIEXES

	²⁹ Si	J_{SiH} ,
compd	NMR, δ ^a	Hz
$CpCp^*Zr[Si(SiMe_3)_3]Cl^b$ (1)		
$Si(SiMe_3)_3$	-87.30	
$Si(SiMe_3)_3$	-6.03	
$CpCp*Hf[Si(SiMe_3)_3]Cl(2)$		
$Si(SiMe_3)_3$	-77.87	
$Si(SiMe_3)_3$	-4.85	
$CpCp*Zr(SiH_2Ph)Cl$ (7)	-14.33 (t)	144
$CpCp*Hf(SiH_2Ph)Cl$ (8)	1.49 (t)	155
$CpCp*Hf[SiH_2(p-Tol)]Cl(9)$	1.46 (t)	157
$CpCp*Hf[SiH_2(p-Tol)]Br$ (21)	7.74 (t)	153
$CpCp*Hf[SiH_2(p-MeOC_6H_4)]Cl (10)$	1.56 (t)	159
$CpCp*Hf[SiH_2(p-FC_6H_4)]Cl (11)$	1.17 (t)	160
$CpCp*Hf(SiH_2Mes)Cl (12)$	1.50 (t)	157
CpCp*Hf(SiH ₂ CH ₂ Ph)Cl (13)	9.69 (t)	153
CpCp*Hf(SiH ₂ Cy)Cl (14)	14.83 (t)	145
Cp ₂ Hf(SiH ₂ Cy)Cl	11.07 (t)	149
CpCp*Hf(SiHPh ₂)Cl (15)	32.25 (d)	158
Cp ₂ Hf(SiHPh ₂)Cl	31.88 (d)	148
CpCp*Zr(SiPh ₃)Cl ^c	42.42	
CpCp*Hf(SiPh ₃)Cl ^c	39.96	
CpCp*Hf(SiHPhMe)Cl (16) (diastereomers)	21.75 (d)	153
	25.10 (d)	153
CpCp*Hf(SiHPhSiH ₂ Ph)Cl (17) (diastereomers)		
SiHPhSiH ₂ Ph	-9.05 (d)	152
SiHPhSiH2Ph	-9.86 (d)	152
SiHPhSiH2Ph	-43.91 (t)	183
SiHPhSiH2Ph	-50.43 (t)	183
$CpCp*Hf(SiH_2C_6H_4SiH_3)C1$ (18)		
$SiH_2C_6H_4SiH_3$	1.16 (t)	162
SiH ₂ C ₆ H ₄ SiH ₃	-63.10 (q)	199
$2,5-[CpCp^*Hf(Cl)SiH_2]_2C_4H_2S(20)$	-14.09 (t)	158
$CpCp*Hf(SiH_2CH_3)Cl(23)$	-7.36 (t)	149
$CpCp*Hf(SiH_3)Cl(24)$	-46.52 (q)	156

^a Benzene-d₆ solvent. ^b Reference 3g. ^c Reference 7b.

to 18 and 19 are probably intermediates in the $[CpCp*ZrH_2]_2$ -catalyzed dehydropolymerization of p-H₃SiC₆H₄SiH₃.¹⁹ The bimetallic thiophene derivative 2,5- $[CpCp*Hf(Cl)SiH_2]_2C_4H_2S$ (20) was obtained similarly. In contrast, a bimetallic complex could not be obtained by reaction of CpCp*Hf(SiHPhSiH₂Ph)Cl (17) with 2. The Hf-Cl bonds of 19 and 20 are trans to one another such that the molecules possess a center of symmetry, resulting in only one set of diastereotopic SiH₂ protons, as observed by ¹H NMR spectroscopy.

The new hafnium hydrosilyl complexes are yellow in color and possess low-energy electronic absorptions in the range 380-390 nm ($\epsilon = 750-1000 \text{ dm}^3 \text{ mol}^{-1} \text{ cm}^{-1}$). The ²⁹Si NMR chemical shifts for d⁰ metal silyl complexes cover a wide range, as seen by the data compiled in Table I. It is readily apparent that substituents bound directly to silicon play the dominant role in defining these ²⁹Si chemical shifts. Note, for example, that replacement of hydrogen atoms with phenyl groups results in pronounced downfield shifts (see entries for 23, 8, 15, and CpCp*Hf(SiPh₃)Cl in Table I). Generally, d⁰ hydrosilyl complexes are characterized by low ${}^{1}J_{\text{SiH}}$ coupling constants (140–160 Hz), which reflect the presence of an electropositive substituent at silicon. The $\nu(SiH)$ stretching frequencies for d⁰ metal hydrosilyl derivatives are shifted by ca. 100 cm⁻¹ to lower energy relative to the corresponding hydrosilanes. For example, 8 exhibits a $\nu(SiH)$ stretching frequency of 2050 cm⁻¹, compared to $\nu(SiH) = 2140$ cm⁻¹ for PhSiH₃.

The quantitative thermal reaction of eq 3 was subjected to a kinetic study. Reaction rates were monitored by ¹H NMR spectroscopy in benzene- d_6 under pseudo-first-order conditions with excess silane. Rates were determined by monitoring the disappearance of 2 and the appearance of HSi(SiMe₃)₃. Under these conditions of excess silane, the only observed hafnium product is CpCp*HfHCl, formed via the dehydrocoupling reaction of 8 with PhSiH₃. The kinetic data (plots of k_{obsd} vs [PhSiH₃], Figure 4) are consistent with a second order rate law:

rate = k[2][PhSiH₃]

(19) Woo, H.-G.; Walzer, J. F.; Tilley, T. D. Macromolecules 1991, 24, 6863.

Figure 4. Kinetic plots for the pseudo-first-order reaction of 2 with a 10-fold excess of phenylsilane. Rate constants $(M^{-1} s^{-1})$: k (40 °C) = 4.3 (3) × 10⁻⁵; k (55 °C) = 1.2 (3) × 10⁻⁴; k (70 °C) = 5.2 (3) × 10⁻⁴; k (85 °C) = 1.2 (3) × 10⁻³.

An Eyring plot of rate data for the temperature range 40-85 °C provided the activation parameters $\Delta H^* = 16.4$ (7) kcal mol⁻¹ and $\Delta S^* = -27$ (2) eu. Comparison of the reaction rate at 70 °C with that of the reaction of 2 with PhSiD₃ at 70 °C yielded a kinetic deuterium isotope effect of $k_{\rm H}/k_{\rm D} = 2.5$ (1).

As mentioned earlier, fluorescent room light has a dramatic acceleration effect on the reaction of eq 3. Via use of cut-off filters, we have determined that the observed photochemistry results from excitation of the low-intensity transition for 2 at 405 nm. With a 365 (\pm 5) nm band-pass filter, the quantum yield for the reaction of 2 with 1 equiv of PhSiH₃ or 20 equiv of PhSiH₃ in benzene-d₆ is the same, 1.0 \pm 0.1.

Currently we have little chemical evidence for photochemically induced homolysis of the metal-silicon bond of 2. For example, no radical coupling products (e.g., PhH₂SiSiH₂Ph or PhH₂SiSi(SiMe₃)₃) are observed, and photolysis by visible light does not initiate polymerization of styrene or methyl methacrylate. The reaction is uninhibited in toluene in the presence of added silyl-radical traps such as cyclohexene or 1,4-cyclohexadiene.²⁰ Also, the photochemical reaction of 2 with 'BuBr, a good silyl radical trapping reagent.²¹ is much slower than the corresponding reaction with PhSiH₃. After 24 h (76% conversion), BrSi(SiMe₃)₃ (25%), a mixture of CpCp*HfCl₂, CpCp*HfClBr, and CpCp*HfBr₂ (25%, 1:2:1 ratio), and 'BuH (5%) were observed. (The mixture of hafnocene dihalide species is probably formed by disproportionation of CpCp*HfBrCl.²²) In the presence of ambient room lighting, the reaction of 2 with PhSiD₃ quantitatively gives CpCp*Hf(SiD₂Ph)Cl and DSi(SiMe₃)₃, with no deuterium scrambling (by ¹H and ²H NMR). Similarly, the photochemical (room light) reaction of 2 with PhCH₂SiD₃ in benzene or benzene- d_6 quantitatively gives CpCp*Hf(SiD₂CH₂Ph)Cl and DSi- $(SiMe_3)_3$ (by ¹H and ²H NMR), and the same products are produced (at the same rate) in the presence of HSiEt₃.

Reaction times for the photochemical reaction of 2 with silanes are strongly influenced by steric requirements of the incoming silane. Whereas variations in the concentration of small primary silanes do not influence reaction times, for bulkier silanes (e.g., MesSiH₃ and secondary silanes) the reaction rates exhibit a strong concentration dependence. For example, under the same lighting conditions, 2 reacts with 1 equiv of PhSiH₃ and 20 equiv of PhSiH₃ at the same rate (over ca. 1 h), whereas reactions of 2 with 1 equiv of Ph₂SiH₂ and 20 equiv of Ph₂SiH₂ require >48 h and 10 h, respectively. Also, in contrast to the dark reactions of 2 with PhSiH₃ and PhSiD₃, there is no difference in the rates of these reactions when both are exposed to the same lighting conditions. Additionally, small Lewis bases (e.g., pyridine and PMe₂Ph) but

^{(20) (}a) Sakurai, H. In *Free Radicals*; Kochi, J. K., Ed.; Wiley: New York, 1973; Vol. II, p 741. (b) Chatgiliatoglu, C.; Ingold, K. U.; Scaiano, J. C. J. Am. Chem. Soc. **1983**, 105, 3292. (c) Aloni, R.; Rajbenbach, L. A.; Horowitz, A. J. Organomet. Chem. **1979**, 171, 155.

⁽²¹⁾ Lehnig, M.; Werner, F.; Neumann, W. P. J. Organomet. Chem. 1975, 97, 375.

⁽²²⁾ Druce, P. M.; Kingston, B. M.; Lappert, M. F.; Spalding, T. R.; Srivastava, R. C. J. Chem. Soc. A 1969, 2106.

Table II.	Equilibrium	Constants	for	Silyl-Group	Exchange	Reactions
-----------	-------------	-----------	-----	-------------	----------	-----------

Woo	et	al.
-----	----	-----

	equilibrium	K _{eq} (25 °C)	
1	$CpCp^{*}(Cl)HfSiH_{2}Tol(9) + PhSiH_{3} \Rightarrow CpCp^{*}(Cl)HfSiH_{2}Ph(8) + TolSiH_{3}$	1.0 (1)	
2	$CpCp^{*}(Cl)HfSiH_2CH_2Ph$ (13) + $PhSiH_3 \rightleftharpoons CpCp^{*}(Cl)HfSiH_2Ph$ (8) + $PhCH_2SiH_3$	1.3 (1)	
3	$CpCp^{*}(Cl)HfSiH_2Cy$ (14) + $MeSiH_3 \Rightarrow CpCp^{*}(Cl)HfSiH_2Me$ (23) + $CySiH_3$	1.8 (1)	
4	$CpCp^{*}(Cl)HfSiH_2Cy$ (14) + $Ph_2SiH_2 \Rightarrow CpCp^{*}(Cl)HfSiHPh_2$ (15) + $CySiH_3$	0.5 (1)	
5	$CpCp^{*}(Cl)HfSiH_2Mes$ (12) + $Ph_2SiH_2 = CpCp^{*}(Cl)HfSiHPh_2$ (15) + $MesSiH_3$	0.6 (1)	
6	$CpCp^{*}(Cl)HfSiHMePh$ (16) + $Ph_{2}SiH_{2} \rightleftharpoons CpCp^{*}(Cl)HfSiHPh_{2}$ (15) + $PhMeSiH_{2}$	1.7 (1)	

not large ones (e.g., PCy₃) strongly inhibit the reactions. It therefore appears that these photochemical σ -bond metathesis reactions involve reactive, coordinatively unsaturated intermediates.

Whereas p-FC₆H₄SiH₃ reacts cleanly with **2** under fluorescent room lighting to produce CpCp*Hf[SiH₂(p-FC₆H₄)]Cl (**10**) in 1 h, analogous σ -bond metathesis reactions with p-XC₆H₄SiH₃ (X = Cl, Br) do not occur at all. Reaction of **2** with the bromide gives a 50% conversion after 24 h to BrSi(SiMe₃)₃ (25%), a mixture of CpCp*HfCl₂, CpCp*HfClBr, and CpCp*HfBr₂ (25%, 1:2:1 ratio), and a mixture of PhSiH₃ and 4,4'-(H₃Si)₂C₆H₄C₆H₄ (50%, 10:3 ratio). The silane HSi(SiMe₃)₃ was not observed as a product. Similar product distributions are obtained in the dark, at much slower rates. Analogous results were observed for the reaction of **8** with p-BrC₆H₄SiH₃ and for the reaction of **2** with p-ClC₆H₄SiH₃. Therefore the aryl halides p-XC₆H₄SiH₃ (X = Cl, Br) somehow inhibit the σ -bond metathesis reaction usually observed for **2** and a primary silane and, instead, undergo reactions involving radical intermediates.

Halide Exchange in CpCp*Hf(SiH₂Ar)X Complexes. To gain further insight into possible reactivity patterns for the new silyl complexes, ligand exchange in the related compounds 8 and CpCp*Hf[SiH₂(p-Tol)]Br (21) was examined. Compound 21 was obtained via reaction of CpCp*Hf[Si(SiMe₃)₃]Br with (p-Tol)-SiH₃. Within 5 h, an equilibrium is established in benzene- d_6 involving 8, 21, 9, and the new silyl complex 22, characterized by ¹H NMR spectroscopy (eq 5). An equilibrium constant of

$$CpCp^{*}Hf \underbrace{\leq}_{CI}^{SiH_2Ph} + CpCp^{*}Hf \underbrace{\leq}_{Br}^{SiH_2(p\text{-}Tol)} \underbrace{\leq}_{Br}^{K_{eq}}$$

$$\underbrace{21}$$

$$CpCp^{*}Hf \underbrace{\leq}_{Br}^{SiH_2Ph} + CpCp^{*}Hf \underbrace{\leq}_{CI}^{SiH_2(p\text{-}Tol)}$$

$$\underbrace{22} \qquad 9$$
(5)

 1.0 ± 0.1 was determined for samples either kept in the dark or exposed to normal room lighting. Statistical halide-exchange equilibria were also observed upon reaction of 21 with 2, 14, and 15. These reactions probably occur via halide-bridged intermediates.²² No products resulting from silyl/halide exchange were observed.

Silyl-Group Exchange between Hafnium Hydrosilyl Complexes and Hydrosilanes. Hydrosilyl CpCp*Hf(SiHRR')Cl complexes react intermolecularly with Si-H bonds, to the extent that steric constraints allow. Thus, silyl exchange between the CpCp*Hf(Cl) group and hydrogen occurs readily, if the smaller silyl group is transferred to hafnium, or if the exchanging silyl groups are of comparable size. In some cases the exchange is balanced such that two silyl complexes exist in equilibrium, as in the reaction shown in eq 6, which has an equilibrium constant of 1.0 ± 0.1 as determined by ¹H NMR spectroscopy. This equilibrium was

established after ca. 5 h at room temperature, under ambient laboratory conditions. Other silyl-exchange equilibria are collected in Table II.

Reactions of d⁰ M-Si Bonds with Alkoxysilanes. In attempts to introduce alkoxy functional groups at the silicon atom of a d⁰ metal silvl complex, σ -bond metathesis reactions with alkoxyhydrosilanes $HSi(OR)_2R'$ were investigated. Harrod and coworkers have reported previously that Cp_2TiMe_2 is an excellent catalyst for the redistribution (disproportionation) of alkoxy- and siloxyhydrosilanes.²³ Thus, Me₂HSiOSiHMe₂ can be polymerized to $(-OSiMe_2-)_n$ species with loss of dimethylsilane. We have found that [CpCp*ZrH₂]₂, a very active catalyst for the dehydrocoupling of hydrosilanes,¹⁹ is quite inferior to Cp₂TiMe₂ as a catalyst for the disproportionation of HSiMe(OMe)₂ to MeSiH₃ and MeSi(OMe)₃ (2500 turnovers/h for Cp₂TiMe₂; 0.4 turnovers/h for $[CpCp*ZrH_2]_2$). During the latter reaction, the zirconium catalyst is quantitatively converted to CpCp*Zr(OMe)₂, which is also a catalyst for the disproportionation, but only at temperatures ≥ 80 °C (eq 7). No redistribution of

$$3HSiMe(OMe)_{2} = \frac{[CpCp*ZrH_{2}]_{2} \text{ or } CpCp*Zr(OMe)_{2}}{[CpCp*ZrH_{2}]_{2} \text{ or } CpCp*Zr(OMe)_{2}}$$

$$MeSiH_3 + 2MeSi(OMe)_3$$
 (7)

Me₂HSiOSiHMe₂ was observed with $[CpCp^*ZrH_2]_2$ as catalyst. The latter zirconium catalyst is sensitive to the steric properties of the substrate, e.g., HSiMe(OMe)₂ is redistributed ca. 3 times faster than is HSiMe(OEt)₂. These redistribution reactions are catalyzed by a wide range of Zr and Hf complexes of the types Cp^*MCl_3 and Cp'_2MX_2 (M = Zr, Hf; Cp' = Cp, Cp^* ; X = H, alkyl, silyl, alkoxide, halide). The observed influences on catalytic activity are as follows: X = H, alkyl, silyl > halide > alkoxide; M = Zr \approx Hf. It therefore appears that these complexes act simply as Lewis acid catalysts for the redistribution reactions, in the same way that acidic clays and silica-alumina do.²⁴

These redistributions may be combined with the σ -bond metathesis chemistry described above to prepare new d⁰ hydrosilyl derivatives of hafnium (eq 8). In these reactions, the metal species apparently acts to redistribute an alkoxyhydrosilane to an alkoxysilane and a hydrosilane, which is then trapped as the metal silyl complex. Alkoxyhydrosilanes may therefore serve as more conveniently handled synthetic equivalents for low-boiling silanes. Due to the volatile nature of the hydrosilanes produced by redistribution, an excess of the starting alkoxysilane is generally employed. The methylsilyl derivative 23 was obtained as a pure, yellow crystalline solid, whereas 24 was contaminated by CpCp*Hf(OMe)Cl and CpCp*HfCl₂. The CpCp*HfCl₂ is probably produced via reactions with chlorosilanes, which are added to commercial HSi(OMe)₃ to inhibit disproportionation.

Descriptions of the Structures of 2 and 8. Given the high reactivity of the mixed-ring, d^0 metal silyl complexes CpCp*M-[Si(SiMe₃)₃]Cl (1 and 2)^{3d,g,i} and their usefulness as starting materials, it was of interest to determine the molecular structures of these key molecules. The structure of 8 was also of interest, given the role that this and related species appear to play in dehydropolymerization reactions.^{5,13b} Initially, we were particularly intrigued by the possibility that the α hydrogens of 8 might be activated toward further reactions by, for example, agostic interactions with the metal center.²⁵ One structurally charac-

^{(23) (}a) Xin, S.; Aitken, C.; Harrod, J. F.; Mu, Y.; Samuel, E. Can. J. Chem. 1990, 68, 471. (b) Laine, R. M.; Rahn, J. A.; Youngdahl, K. A.; Babonneau, F.; Hoppe, M. L.; Zhang, Z.-F.; Harrod, J. F. Chem. Mater. 1990, 2, 464.

⁽²⁴⁾ Stewart, H. F. J. Organomet. Chem. 1967, 10, 229 and references therein.

terized hafnium silyl complex, $Cp^*Cl_3HfSi(SiMe_3)_3$, is available for comparisons.^{8a}

An ORTEP view of 2 is given in Figure 5, and relevant geometrical parameters are given in Table III. Two independent molecules/unit cell result in two Hf-Si distances of 2.881 (4) and 2.888 (4) Å. These distances are considerably greater than the one found in Cp*Cl₃HfSi(SiMe₃)₃, 2.748 (4) Å, and exceed d⁰ M-Si distances observed for zirconocene derivatives.¹ This probably reflects a high degree of steric crowding in 2, which is also seen in distortions about the metal-bound silicon atom. The Si-Si-Si bond angles for 2 (average 101°) are compressed relative to those observed for Cp*Cl₃HfSi(SiMe₃)₃ (average 105°). Also, the Hf-Si-Si angles in 2 (106.3 (2), 107.3 (2), 115.3 (2), 115.3 (2), 129.8 (2), and 127.3 (2)°) exhibit wide variations due to intramolecular ligand-ligand repulsions and are greater than those found in Cp*Cl₃HfSi(SiMe₃)₃ (101.1 (2), 114.3 (1), and 124.1 (2)°).

The crystal structure of 8 (Figure 6, Table IV) reveals mononuclear complexes with terminal Hf-SiH₂Ph ligands. The Hf-Si distance in 8, 2.729 (3) Å, is considerably shorter than the corresponding distance for 2, presumably because of less steric interaction between the silyl ligand and the bulky Cp* group. The hydrogen atoms bonded to silicon were located by a difference map and were refined. As is evident in Figure 6, these hydrogens adopt roughly normal tetrahedral positions about the silicon atom (\angle HSiH = 102 (6)°). The Hf-Si-C angle of 113.5 (2)° is slightly more acute than the analogous angle in Cp₂Ti(SiH₂Ph)PEt₃, 114.4 (5)°.¹¹

The difference in Hf-Si bond lengths in these two structures (0.16 Å) indicates that d^0 M-Si bond distances (and bond strengths) can be quite sensitive to steric factors. The long M-Si distance in 2 (and presumably also in 1) is consistent with the observed high reactivity for these silyl complexes.^{3d,g,i}

Discussion

Zirconocene and hafnocene d⁰ silyl complexes react with hydrosilanes via silvl-group exchange to give σ -bond metathesis products. Such reactions are generally favorable, but are subject to rather severe steric constraints. Thus, reactions proceed only such that less sterically hindered silvl complexes are formed, and tertiary silanes are generally found to be unreactive. In many cases it is observed that the direct, σ -bond metathesis products are unstable with respect to further reactions to produce hydride complexes and Si-Si bonded species. For reasons that are not entirely clear, the mixed-ring $CpCp^*M(SiR_3)X$ (M = Zr, Hf) complexes participate in cleaner reactions. In particular, the well-behaved CpCp*Hf system has proven most useful in providing numerous examples of stable, d⁰ hydrosilyl complexes. Such complexes have been valuable in characterizing the σ -bond metathesis chemistry for d⁰ silvl complexes, which has resulted in formulation of a mechanism for the dehydropolymerization of hydrosilanes by early-transition-metal catalysts. 5a,13b,17

Silyl-exchange reactions can be used to estimate relative Hf–Si bond dissociation energies. Observed silyl-displacement reactions

(25) (a) Brookhart, M.; Green, M. L. H. J. Organomet. Chem. 1983, 250,
 (b) Ginzburg, A. G. Russ. Chem. Rev. (Engl. Transl.) 1988, 57, 1175.

Figure 5. ORTEP view of CpCp*Hf[Si(SiMe₃)₃]Cl (2).

Figure 6. ORTEP view of CpCp*Hf(SiH₂Ph)Cl (8).

Table III. Selected Bond Distances^a and Angles^b for 2

(a) Bond Distances					
Hf(1)-Cl(1)	2.395 (3)	Hf(2)-Cl(2)	2.398 (4)		
Hf(1)-Si(11)	2.881 (4)	Hf(2)-Si(21)	2.888 (4)		
Si(11)-Si(12)	2.394 (5)	Si(21)-Si(22)	2.407 (5)		
Si(11)-Si(13)	2.394 (5)	Si(21)-Si(23)	2.385 (5)		
Si(11)-Si(14)	2.379 (5)	Si(21)-Si(24)	2.378 (5)		
(b) Bond Angles					
Cl(1)-Hf(1)-Si(11)	89.4 (1)	C1(2)-Hf(2)-Si(2	1) 91.8 (1)		
Hf(1)-Si(11)-Si(12)	107.3 (2)	Hf(2)-Si(21)-Si(2	22) 129.8 (2)		
Hf(1)-Si(11)-Si(13)	127.3 (2)	Hf(2)-Si(21)-Si(2	23) 106.3 (2)		
Hf(1)-Si(11)-Si(14)	115.3 (2)	Hf(2)-Si(21)-Si(2	24) 115.3 (2)		
Si(12)-Si(11)-Si(13)	97.8 (2)	Si(22)-Si(21)-Si(23) 99.4 (2)		
Si(12)-Si(11)-Si(14)	105.4 (2)	Si(22)-Si(21)-Si(24) 98.2 (2)		
Si(13)-Si(11)-Si(14)	100.8 (2)	Si(23)-Si(21)-Si(24) 104.7 (2)		

^a In angstroms. ^b In degrees.

Table IV.Selected Bond Distances^a and Angles^b for 8

(a) Bond Distances					
Hf-Cl(1)	2.394 (3)	Si(1)-H(A)	1.43 (11)		
Hf-Si(1)	2.729 (3)	Si(1)-H(B)	1.48 (10)		
Si(1)-C(20)	1.986 (7)				
(b) Bond Angles					
Cl(1)-Hf-Si(1)	89.9 (1)	H(A)-Si(1)-C(20)	107 (4)		
Hf-Si(1)-C(20)	113.5 (2)	H(B)-Si(1)-C(20)	105 (4)		
Hf-Si(1)-H(A)	115 (4)	H(A)-Si(1)-H(B)	102 (6)		
Hf-Si(1)-H(B)	112 (4)				

^a In angstroms. ^b In degrees.

(e.g., the quantitative reactions of complexes 12, 14, and 15 with PhSiH₃ in benzene- d_6 to produce 8, along with the corresponding silane) and the equilibrium data compiled in Table III show that steric factors play a large role in determining the relative stabilities of hafnium silyl complexes. In a few cases, electronic effects appear to be more dominant (entries 2 and 6 of Table III). Relevant to these observations, it is known that phenyl substitution at silicon has a slight weakening effect on Si-H bonds.²⁶ For

⁽²⁶⁾ Walsh, R. Acc. Chem. Res. 1981, 14, 246.

synthetic purposes, complex 2 serves as a good starting material, since Si(SiMe₃)₃ acts as a good leaving group in these σ -bond metathesis reactions. Primary and secondary silanes react to give stable, isolable hafnium hydrosilyl complexes, despite the fact that an anomalously weak Si-H bond is formed in the reaction. From published Si-H bond dissociation energies for H-SiH₂Ph (88.2 kcal mol⁻¹)²⁶ and H-Si(SiMe₃)₃ (79.0 kcal mol⁻¹),²⁷ the Hf-Si bond in 8 appears to be at least 9.2 kcal mol⁻¹ stronger than the Hf-Si bond of 2.

The σ -bond metathesis reactions described above are kinetically well-behaved in the dark. The reaction between 2 and phenylsilane, which was examined in most detail, exhibits a second-order rate law and kinetic behavior that is consistent with other σ -bond metathesis reactions for d⁰ metal centers that are thought to proceed via four-center transition states.^{12,28} For example, Bercaw and co-workers have determined that the σ -bond metathesis reaction of $(Cp^*-d_{15})_2$ ScMe with benzene (to give $(Cp^*-d_{15})_2$ ScPh and methane) is characterized by the activation parameters ΔH^* = 18.9 (2) kcal mol⁻¹ and ΔS^* = -23 (2) eu and the isotope effect $k_{\rm H}/k_{\rm D}$ (80 °C) = 2.8 (2)¹² (cf. $\Delta H^{*} = 16.4$ (7) kcal mol⁻¹, ΔS^{*} = -27 (2) eu, and $k_{\rm H}/k_{\rm D}$ (70 °C) = 2.5 (1) for the reaction in eq 3).²⁸ We therefore propose that the σ -bond metathesis reactions observed for d⁰ silyl complexes involve similar four-center transition states. For example, the reaction in eq 3 would involve the transition state:

This transition state is analogous to those previously proposed for σ -bond metathesis reactions involving d⁰ M-C and C-H bonds.^{12,29} However, it is interesting to note that reactions of the latter type do not readily occur for group 4 bis(cyclopentadienyl) derivatives.³⁰ A likely explanation for the enhanced behavior of silicon toward this process is that silicon is able to expand its coordination sphere more readily than carbon.³¹

The photochemistry displayed by 1 and 2 in the presence of silanes is remarkable, in that it gives rise to quantitative conversions and high quantum yields. These photochemical reactions apparently result from an electronic LMCT transition (Figure 1) that shifts electron density from the silyl ligand to the metal. This process appears to produce an intermediate (I, eq 9) which exhibits enhanced reactivity toward silanes, especially unhindered silanes.

 $CpCp^{*}Hf[Si(SiMe_{3})_{3}]Cl \xrightarrow[k_{-1}]{h\nu} I \xrightarrow[-HSi(SiMe_{3})_{3}]{}^{k_{2}[RR'SiH_{2}]} CpCp^{*}Hf(SiHRR')Cl (9)$

Since 2 is relatively stable to room light (it does decompose in the presence of an intense light source, or after long periods of exposure to normal room lighting), the photochemical formation of I is considered to be reversible. Sterically unhindered hydrosilanes are more efficient traps for the intermediate I than bulky silanes, and the reaction of I with a silane appears to be blocked by donor ligands which can tie up coordination sites.

The photochemistry of related hydrocarbyl group 4 (η^5 - $C_5R_5)_2MR'R''$ derivatives has been extensively investigated.^{32,33} This chemistry is complex, and mechanisms have proven difficult to probe. However, a number of primary processes have been implicated. Homolysis of a M–C σ -bond produces $(\eta^5-C_5R_5)_2MR'$ and 'R" radical pairs that recombine very rapidly or are trapped by reactive reagents.^{32b} Reductive elimination, as in the elimination of biphenyl derivatives from $Cp_2Zr(aryl)_2$ with generation of zirconocene, can also occur.^{32c,d} The elimination of the hydrocarbyl group with a hydrogen atom of a cyclopentadienyl ligand has been observed,^{32e} as has homolytic rupture of a M-Cp bond.^{32f} A recent, thorough study on the photochemistry of $Cp_2Ti(C_6F_5)_2$ is worth noting, given analogies that can be made to the behavior of 2. Irradiation into the visible absorption band of $Cp_2Ti(C_6F_5)_2$ $(\lambda = 463 \text{ nm})$ produces a long-lived (~200 μ s) transient species with unit efficiency ($\Phi = 0.95 \pm 0.1$). This intermediate quantitatively reverts back to starting material in dry solvents and undergoes reaction with water with a limiting quantum yield of 0.95 ± 0.1 . Matrix isolation studies indicate that the transient intermediate is an isomer of $Cp_2Ti(C_6F_5)_2$ with a slipped Cp ring, $(\eta^5 - C_5 H_5)(\eta^1 - C_5 H_5) Ti(C_6 F_5)_2^{-33}$

On the basis of the information presently available, it is difficult to postulate the identity of intermediate species that may be responsible for the photon-accelerated reactions of 1 and 2. Solvent-caged radical species such as CpCp*MCl and 'Si(SiMe₃)₃ are difficult to exclude, especially since ESR signals are observed upon exposure to room light. Also, compound 1 has previously been observed to undergo a clean photochemical insertion reaction with ethylene, with a quantum yield of 2.5 ($\lambda_{irr} = 380-470 \text{ nm}$), implying a radical-chain mechanism initiated by homolytic cleavage of the Zr-Si bond.^{3d} Therefore it seems that light induces M-Si bond rupture in these compounds, but it is difficult to assess the importance of this process in reactions with hydrosilanes. A number of other observations suggest that homolytic cleavage of the M-Si bond cannot explain the σ -bond metathesis reactions. For example, the photochemical reaction of 2 with PhSiH₁ is quantitative and does not produce side products from radicalcoupling or radical-abstraction processes. The reaction is highly sensitive to the steric properties of the reacting hydrosilane, and in the reaction of 2 with PhSiD₃, deuterium is transferred exclusively to the Si(SiMe₃)₃ group. Photolysis by room light does not induce polymerization of styrene or methyl methacrylate, and traps that react rapidly with silvl radicals, e.g., 1,4-cyclohexadiene and toluene,²⁰ do not influence the course of the reaction. Finally ^tBuBr, which is a good silyl-radical trap,²¹ reacts much more slowly with 2 under illumination by visible light than does PhSiH₃. The absolute rate constant for reaction of 'SiMe2SiMe3 radical with ^tBuBr in isooctane is $2.6 \pm 0.2 \times 10^8$ M⁻¹ s⁻¹,³⁴ and in general silyl radicals abstract halogen from carbon much faster than they abstract hydrogen from silicon.²⁰ In the context of possible silyl-radical reactions, it is also interesting to note that, upon photolysis with visible light, yellow Hg(SiMe₃)₂ produces •SiMe₃ radicals, which can be trapped by various reagents, including arenes and alkenes.21,35

⁽²⁷⁾ Kanabus-Kaminska, J. M.; Hawari, J. A.; Griller, D.; Chatgilialoglu, C. J. Am. Chem. Soc. 1987, 109, 5267.

⁽²⁸⁾ Given the large differences in C-H and Si-H vibrational frequencies, it appears that the magnitudes of these two kinetic isotope effects are determined by different factors and that their similarity is probably fortuitous. See: Melander, L.; Saunders, W. H., Jr. *Reaction Rates of Isotopic Molecules*; Wiley: New York, 1980.

^{(29) (}a) Latesky, S. L.; McMullen, A. K.; Rothwell, I. P.; Huffman, J. C. J. Am. Chem. Soc. 1985, 107, 5981. (b) Fendrick, C. M.; Marks, T. J. J. Am. Chem. Soc. 1986, 108, 425. (c) Bruno, J. W.; Smith, G. M.; Marks, T. J.; Fair, C. K.; Schultz, A. J.; Williams, J. M. J. Am. Chem. Soc. 1986, 108, 4064. (e) Watson, P. J.; Parshall, G. W. Acc. Chem. Res. 1985, 18, 51. (f) Christ, C. S., Jr.; Eyter, J. R.; Richardson, D. E. J. Am. Chem. Soc. 1986, 108, 4327. (h) Steigerwald, M. L.; Goddard, W. A., 111 J. Am. Chem. Soc. 1986, 108, 4327. (b) Steigerwald, M. L.; Goddard, W. A., 111 J. Am. Chem. Soc. 1984, 106, 308 and references in the above. (30) Cardin, D. J.; Lappert, M. F.; Raston, C. L. Chemistry of Organo-

⁽³⁰⁾ Cardin, D. J.; Lappert, M. F.; Raston, C. L. Chemistry of Organo-Zirconium and -Hafnium Compounds; Halsted Press: New York, 1986.
(31) (a) Corriu, R. J. P. J. Organomet. Chem. 1990, 400, 81. (b) Holmes, R. R. Chem. Rev. 1990, 90, 17 and references in the above.

^{(32) (}a) Pourreau, D. B.; Geoffroy, G. L. Adv. Organomet. Chem. 1985, 24, 249. (b) Van Leeuwen, P. W. N. M.; Van der Heijden, H.; Roobeek, C. F.; Frijns, J. H. G. J. Organomet. Chem. 1981, 209, 169. (c) Erker, G. J. Organomet. Chem. 1981, 209, 169. (c) Erker, G. J. Organomet. Chem. 1977, 134, 189. (d) Tung, H.-S.; Brubaker, C. H., Jr. Inorg. Chim. Acta 1981, 452, 197. (e) Bamford, C. H.; Puddephatt, R. J.; Slater, D. M. J. Organomet. Chem. 1978, 159, C31. (f) Harrigan, R. W.; Hammond, G. S.; Gray, H. B. J. Organomet. Chem. 1974, 81, 79. (g) Hudson, A.; Lappert, M. F.; Pichon, R. J. Chem. Soc., Chem. Commun. 1983, 374. (h) Rausch, M. D.; Boon, W. H.; Att, H. G. J. Organomet. Chem. 1977, 141, 299. (i) Samuel, E.; Maillard, P.; Giannotti, C. J. Organomet. Chem. 1977, 142, 289.

⁽³³⁾ Klingert, B.; Roloff, A.; Urwyler, B.; Wirz, J. Helv. Chim. Acta 1988, 71, 1858.

 ⁽³⁴⁾ Lusztyk, J.; Maillard, B.; Ingold, K. U. J. Org. Chem. 1986, 51, 2457.
 (35) Neumann, W. P.; Reuter, K. J. Organomet. Chem. Lib. 1979, 7, 229.

The photochemical generation of reactive, isomeric species from 1 and 2 appears to be a strong possibility, particularly in light of the studies by Klingert et al. on $Cp_2Ti(C_6F_5)_2$. The observed dependence on size of the reacting silane and the inhibition by phosphines suggest that this intermediate possesses at least one open coordination site. At this time it is difficult to propose a structure for this intermediate, but structures with η^{1-} or η^{3-} cyclopentadienyl ligands seem to be good candidates. Other possibilities, such as chlorosilane complexes $CpCp^*M[-Cl-Si-(SiMe_3)_3]$, also suggest themselves.

The possibility that the observed photochemistry of 1 and 2 is due to a long-lived excited state has been addressed preliminarily by examining fluorescence spectra for 2. The only emission that was positively identified, at 570 nm, is due to excitation in the 500 ± 60 nm region. Obviously, future investigations should involve more in-depth mechanistic photochemical studies and attempts to observe photogenerated transients.

Experimental Section

All manipulations were performed under an atmosphere of nitrogen or argon using Schlenk techniques and/or a Vacuum Atmospheres glovebox. Dry, oxygen-free solvents were employed throughout. Elemental analyses were performed by Mikroanalytisches Labor Pascher and Schwartzkopf microanalytical laboratories. Infrared spectra were recorded on a Perkin-Elmer 1330 infrared spectrometer. Electronic spectra were recorded on an IBM 9420 UV-vis spectrophotometer. Fluorescence spectra were obtained on a SLM-Aminco Model SPF-500C fluorometer with a bandwidth of 5 nm for excitation and emission. NMR spectra were recorded on a GE QE-300 instrument at 300 MHz (¹H), 75.5 MHz (13C), 59.6 MHz (29Si), and 46.1 MHz (2H). Some 29Si NMR spectra were acquired on a Varian UN-500 instrument at 99.3 MHz. An INE-PT sequence was employed to enhance signals in the ²⁹Si NMR spectra.³⁶ ESR measurements were performed on a Varian E-3 X-band 9.546-GHz spectrometer at room temperature. For quantum-yield measurements, the light intensity entering the photolysis cell through the 365 (± 5) nm filters was determined by using the well-known potassium ferrioxalate actinometer.³⁷ A typical photon flux into the photochemical cell was 1×10^{-7} einstein/min at 365 (±5) nm. A 200-W Hg-Xe short arc lamp (Kratos LH 150) was used. Hydrosilanes were prepared from the corresponding chlorosilanes (Petrarch) by reduction with LiAlH4 (deuterated silanes were prepared by reduction with LiAlD₄). PhH₂SiSiH₂Ph was prepared according to the literature procedure,³⁸ as were p- $H_3SiC_6H_4SiH_3$ and 2,5- $(H_3Si)_2C_4H_2S$,¹⁹ CpCp*HfCl₂,³⁹ CpCp*Zr[Si-(SiMe₃)₃]Cl,³⁸ and (THF)₃LiSi(SiMe₃)₃,⁴⁰ Chlorosilanes and alkoxysilanes were used as received. CpCp*Hf[Si(SiMe₃)₃]Br was prepared by the reaction of (THF)₃LiSi(SiMe₃)₃ with CpCp*HfBr₂ (prepared from CpCp*HfCl₂ and BBr₃).

CpCp*Hf[Sl(SiMe₃)₃]Cl (2). A 250-mL round-bottom flask was charged with CpCp*HfCl₂ (4.95 g, 11.0 mmol), (THF)₃LiSi(SiMe₃)₃ (5.18 g, 11.0 mmol), and diethyl ether (150 mL) at room temperature. The flask was covered with aluminum foil to protect it from room light, the reaction mixture was stirred for 24 h, and the solvent was then removed by vacuum transfer. The orange residue was extracted with pentane (4 × 50 mL), and the combined extracts were concentrated and cooled (-40 °C) to give orange crystals (mp 175-177 °C) in 67% yield (4.88 g). Anal. Calcd for $C_{24}H_{47}$ ClSi₄Hf: C, 43.6; H, 7.16. Found: C, 43.5; H, 7.12. IR (Nujol, CsI, cm⁻¹): 1250 m sh, 1238 m, 1070 vw, 1030 m, 1018 m, 910 vw, 860 m sh, 830 s, 810 s sh, 745 w sh, 670 m, 620 m, 335 w, 312 w. UV-vis (pentane, nm): 226 (6000), 274 (3220), 405 (445). ¹H NMR (benzene-d₆, 22 °C): δ 0.52 (s, 27 H, SiMe₃), 1.88 (s, 15 H, C₅Me₅), 5.96 (s, 5 H, C₅Me₅). ¹³Cl¹H] NMR (benzene-d₆, 22 °C): δ 6.74 (SiMe₃), 13.50 (C₅Me₅). ¹³Cl¹H₂ NMR (benzene-d₆).

Reaction of Cp₂Zr[Sl(SlMe₃)₃]Cl with PhSiH₃. An NMR tube was charged with Cp₂Zr[Si(SiMe₃)₃]Cl (0.02 g, 0.04 mmol), PhSiH₃ (0.010 mL, 0.08 mmol), and benzene- d_6 (0.4 mL). After 2.5 h (98% conversion, as judged by disappearance of Cp₂Zr[Si(SiMe₃)₃]Cl), the 'H NMR spectrum showed resonances assigned to Cp₂Zr(SiH₂Ph)Cl (3, 77%), [Cp₂Zr₁Cl]_n (9%), PhH₂SiSiH₂Ph (9%), PhH₂SiSiH₂Ph (5%), HSi(SiMe₃)₃, and as yet unidentified products. 'H NMR spectrum for

3 (benzene- d_6 , 22 °C): δ 4.84 (s, SiH), 5.88 (s, C₅H₅), 7.22 (m, m,p-C₆H₅), 7.80 (d, J = 7.2 Hz, o-C₆H₅).

Reaction of Cp₂Hf[Si(SiMe₃)₃]Cl with PhSiH₃. An NMR tube was charged with Cp₂Hf[Si(SiMe₃)₃]Cl (0.02 g, 0.03 mmol), PhSiH₃ (0.013 mL, 0.10 mmol), and benzene- d_6 (0.4 mL). After 2 h (ca. 50% conversion, as judged by disappearance of Cp₂Hf[Si(SiMe₃)₃]Cl), the ¹H NMR spectrum showed resonances assigned to Cp₂Hf(SiH₂Ph)Cl (4, 5%), [Cp₂HfHCl]_n (10%), PhH₂SiSiH₂Ph (23%), PhH₂SiSiHPhSiH₂Ph (52%), PhH₂Si(SiHPh)₂SiH₂Ph (10%), HSi(SiMe₃)₃, and as yet unidentified products. ¹H NMR spectrum for 4 (benzene- d_6 , 22 °C): δ 4.70 (s, SiH). Other resonances were obscured.

Cp₂Hf(SiH₂Cy)Cl (5). To Cp₂Hf[Si(SiMe₃)₃]Cl (0.50 g, 0.85 mmol) dissolved in benzene (20 mL) was added CySiH₃ (0.12 g, 1.0 mmol). Stirring for 16 h under ambient fluorescent room lighting resulted in a yellow solution. Removal of volatiles, extraction with pentane (30 mL), and concentration and cooling (-40 °C) of the extract gave yellow crystals (0.25 g). The crystals are a mixture of 5 and [Cp₂HfHCl]_n (1:1 ratio, as judged by ¹H NMR). IR (Nujol, CsI, cm⁻¹): 2030 s (Si-H). ¹H NMR (benzene-d₆, 22 °C): δ 1.16–2.20 (m, 11 H, Cy), 4.43 (d, J_{HH} = 3.3 Hz, 2 H, SiH₂), 5.73 (s, 10 H, C₅H₅). ¹³C[¹H} NMR (benzene-d₆, 22 °C): δ 27.27, 29.09, 29.32, 33.91 (Cy), 109.75 (C₅H₅).

Cp₂Hf(SiHPh₂)Cl (6). Diphenylsilane (0.19 g, 1.0 mmol), Cp₂Hf-[Si(SiMe₃)₃]Cl (0.50 g, 0.85 mmol), and benzene (20 mL) were placed in a Schlenk flask. Stirring for 2.5 days under ambient fluorescent room lighting resulted in a yellow solution. Removal of volatiles, extraction with pentane (30 mL), and concentration and cooling (-40 °C) of the extract afforded yellow crystals (0.31 g). The crystals were contaminated with [Cp₂HfHCl]_n (ca. 10%, by ¹H NMR spectroscopy). IR (Nujol, CsI, cm⁻¹): 2030 m (Si-H). ¹H NMR (benzene-d₆, 22 °C): δ 5.63 (s, 10 H, C₃H₅), 5.80 (s, 1 H, SiH), 7.14 (m, 2 H, *p*-C₆H₅), 7.24 (t, *J* = 7.2 Hz, 4 H, *m*-C₆H₅), 7.82 (m, 4 H, *o*-C₆H₅). ¹³Cl¹H} NMR (benzene-d₆, 22 °C): δ 110.24 (C₅H₅), 127.94, 128.0, 128.13, 136.31 (SiHPh₂).

CpCp*Zr(SiH₂Ph)Cl (7). An NMR tube was charged with 1 (0.06 g, 0.1 mmol), PhSiH₃ (0.01 g, 0.1 mmol), and benzene- d_6 (0.5 mL) at room temperature. The NMR tube was left for 10 min under ambient laboratory lighting. By NMR spectroscopy, the reaction was quantitative. ¹H NMR (benzene- d_6 , 22 °C): δ 1.73 (s, 15 H, C₅Me₅), 4.27 (d, ²J_{HH} = 1.2 Hz, 1 H, SiH), 4.70 (d, ²J_{HH} = 1.2 Hz, 1 H, SiH), 5.66 (s, 5 H, C₅H₅), 7.15 (t, J = 7.3 Hz, 1 H, p-C₆H₅), 7.26 (t, J = 7.3 Hz, 2 H, m-C₆H₅), 7.85 (d, J = 7.3 Hz, 2 H, ρ -C₆H₅). ¹³Cl¹H} NMR (benzene- d_6 , 22 °C): δ 12.48 (C₅Me₅), 110.48 (C₅H₅), 120.24 (C₅Me₅), 127.53, 127.89, 136.07, 136.49 (C₆H₅).

CpCp*Hf(SiH₂Ph)Cl (8). PhSiH₃ (0.082 mL, 0.66 mmol) was added to a benzene (15 mL) solution of 2 (0.40 g, 0.60 mmol). Stirring for 1.5 h under ambient fluorescent room lighting resulted in a yellow solution. Removal of volatiles, extraction with pentane (30 mL), and concentration and cooling of the pentane extract gave yellow crystals (mp 123-125 °C) in 70% yield (0.22 g): mol wt in benzene, 561 (calcd 522). Anal. Calcd for C₂₁H₂₇ClSiHf: C, 48.4; H, 5.22. Found: C, 48.2; H, 5.38. IR (Nujol, CsI, cm⁻¹): 2050 s (Si-H) [cf. 1475 s for CpCp*Hf(SiD₂Ph)Cl], 1425 m, 1105 w, 1063 w, 1023 m, 1010 m, 915 s, 820 s, 785 s, 724 s, 696 m, 455 w, 395 w, 335 w, 316 w. UV-vis (pentane, nm): 253 (7200), 380 (950). ¹H NMR (benzene- d_6 , 22 °C): δ 1.81 (s, 15 H, C₅Me₅) 4.68 (d, ${}^{2}J_{HH} = 1.2$ Hz, 1 H, SiH), 5.14 (d, ${}^{2}J_{HH} = 1.2$ Hz, 1 H, SiH), 5.63 (s, 5 H, C₅H₅), 7.15 (t, J = 7.3 Hz, 1 H, p-C₆H₅), 7.27 (t, J = 7.3 Hz, 2 H, m-C₆H₅), 7.84 (d, J = 7.3 Hz, 2 H, o-C₆H₅). ¹³Cl¹H} NMR (benzene-d₆, 22 °C): δ 11.95 (C₅Me₅), 111.54 (C₅H₅), 119.03 (C₅Me₅), 127.51, 127.84, 136.70, 143.17 (C₆H₅). CpCp*Hf(SiD₂Ph)Cl was prepared by the same procedure by using 2 and PhSiD₃.

CpCp*Hf[SiH₂(p-Tol)]Cl (9). The method for **8** was employed, using p-MeC₆H₄SiH₃ (0.093 mL, 0.66 mmol), benzene (15 mL), and **2** (0.40 g, 0.60 mmol). Yellow crystals (mp 123-125 °C) were obtained in 74% yield (0.24 g). Anal. Calcd for $C_{22}H_{29}ClSiHf$: C, 49.4; H, 5.46. Found: C, 49.3; H, 5.32. IR (Nujol, CsI, cm⁻¹): 2060 s (Si-H), 1596 w, 1308 w, 1255 w, 1185 w, 1090 m, 1014 s, 930 s, 815 s, 752 s, 609 w, 595 w, 478 m, 400 w, 343 m, 315 m. UV-vis (pentane, nm): 226 (6500), 256 (8170), 384 (950). ¹H NMR (benzene-d₆, 22 °C): δ 1.81 (s, 15 H, C₅Me₅), 2.18 (s, 3 H, p-Me), 4.74 (d, ²J_{HH} = 1.2 Hz, 1 H, SiH), 5.22 (d, ²J_{HH} = 1.2 Hz, 1 H, SiH), 5.65 (s, 5 H, C₅H₅), 7.13 (d, J = 7.5 Hz, 2 H, C₆H₄). ¹³Cl⁴H NMR (benzene-d₆, 22 °C): δ 12.01 (C₅Me₅), 21.46 (p-Me), 111.57 (C₅H₅), 119.00 (C₅Me₅), 114.61, 128.78, 136.79, 139.12 (MeC₆H₄).

CpCp⁺Hf[SiH₂(*p*-MeOC₆H₄)]Cl (10). The method for 8 was employed, using *p*-MeOC₆H₄SiH₃ (0.10 mL, 0.66 mmol), benzene (15 mL), and **2** (0.40 g, 0.60 mmol). Yellow crystals (mp 117–119 °C) were obtained in 71% yield (0.24 g). Anal. Calcd for C₂₂H₂₉ClOSiHf: C, 47.9; H, 5.30. Found: C, 47.8; H, 5.30. IR (Nujol, CsI, cm⁻¹): 2035 s (Si-H), 1590 m, 1556 w, 1490 m, 1436 m, 1300 w, 1270 s, 1240 s, 1175 m, 1095 m, 1064 w, 1028 m, 1009 m, 910 s, 820 s, 792 s, 780 s, 745 w sh, 705 w, 510 w, 478 w, 335 m, 310 m. ¹H NMR (benzene-d₆, 22 °C):

⁽³⁶⁾ Blinka, T. A.; Helmer, B. J.; West, R. Adv. Organomet. Chem. 1984, 23, 193.

⁽³⁷⁾ Calvert, J. G.; Pitts, J. N. Photochemistry; Wiley: New York, 1986.
(38) Aitken, C.; Barry, J.; Gauvin, F.; Harrod, J. F.; Malek, A.; Rousseau, D. Organometallics 1989, 8, 1732.

⁽³⁹⁾ Rogers, R. D.; Benning, M. M.; Kurihara, L. K.; Morairty, K. J.; Rausch, M. D. J. Organomet. Chem. 1985, 293, 51.

⁽⁴⁰⁾ Gutekunst, G.; Brook, A. G. J. Organomet. Chem. 1982, 225, 1.

δ 1.81 (s, 15 H, C₅Me₅), 3.33 (s, 3 H, *p*-MeO), 4.78 (d, ²J_{HH} = 1.5 Hz, 1 H, SiH), 5.26 (d, ²J_{HH} = 1.5 Hz, 1 H, SiH), 5.67 (s, 5 H, C₅H₅), 6.92 (d, J = 8.7 Hz, 2 H, C₆H₄), 7.80 (d, J = 8.7 Hz, 2 H, C₆H₄). ¹³C{¹H} NMR (benzene-d₆, 22 °C): δ 11.94 (C₅Me₅), 54.49 (*p*-Me), 111.58 (C₅H₅), 118.96 (C₅Me₅), 113.88, 132.93, 138.05, 159.93 (MeOC₆H₄).

CpCp*HfjSiH₂(p-FC₆H₄)**Cl** (11). Using p-FC₆H₄SiH₃ (0.095 mL, 0.66 mmol), benzene (15 mL), and 2 (0.40 g, 0.60 mmol), the method for compound 8 was followed to obtain yellow crystals (mp 108–110 °C) in 73% yield (0.24 g). Anal. Calcd for C₂₁H₂₆ClFSiHf: C, 46.8; H, 4.86; F, 3.52. Found: C, 46.6; H, 4.95; F, 3.31. IR (Nujol, CsI, cm⁻¹): 2040 s (Si-H), 1575 m, 1490 s, 1300 w, 1255 w, 1245 m, 1159 m, 1090 m, 1080 w sh, 1063 w, 1039 m, 1010 m, 915 s, 825 s, 774 s, 695 m, 500 w, 405 w, 335 m, 314 m. ¹H NMR (benzene-d₆, 22 °C): δ 1.79 (s, 15 H, C₅Me₅), 4.63 (d, ²J_{HH} = 1.5 Hz, 1 H, SiH), 5.09 (d, ²J_{HH} = 1.5 Hz, 1 H, SiH), 5.60 (s, 5 H, C₃H₅), 6.93 (dd, J = 8.1 Hz, 2 H, C₆H₄), 7.66 (dd, J = 8.1 Hz, 2 H, C₆H₄). ¹³Cl¹H} NMR (benzene-d₆, 22 °C): δ 11.88 (C₅Me₅), 111.57 (C₃H₅), 119.16 (C₅Me₅), 114.64, 114.90, 138.35, 164.84 (FC₆H₄).

CpCp*Hf(SiH₂Mes)Cl (12). MesSiH₃ (0.10 g, 0.66 mmol), 2 (0.40 g, 0.60 mmol), and benzene (15 mL) were placed in a Schlenk flask. Stirring for 2 days under ambient fluorescent room lighting resulted in a yellow solution. Removal of volatiles, extraction with pentane (30 mL), and concentration and cooling of the extract gave yellow crystals (mp 144–146 °C) in 71% yield (0.24 g). Anal. Calcd for $C_{24}H_{33}ClSiHf$: C, 51.2; H, 5.90. Found: C, 51.4; H, 5.92. IR (Nujol, CsI, cm⁻¹): 2060 s (Si-H), 1600 w, 1022 m, 1012 m, 954 m, 845 w, 818 s, 783 s, 730 w, 704 m, 600 br, 335 w, 314 m. ¹H NMR (benzene- d_6 , 22 °C): δ 1.83 (s, 15 H, C₅Me₅), 2.24 (s, 3 H, *p*-Me), 2.61 (s, 6 H, *o*-Me), 4.61 (d, ²J_{HH} = 2.6 Hz, 1 H, SiH), 4.48 (d, ²J_{HH} = 2.6 Hz, 1 H, SiH), 5.93 (s, 2 H, Me₃C₆H₂). ¹³Cl¹H} NMR (benzene- d_6 , 22 °C): δ 11.86 (C₅Me₅), 21.23 (*p*-Me), 24.87 (*o*-Me), 111.52 (C₅H₅), 119.19 (C₅Me₅), 128.60, 136.90, 138.49, 143.82 (Me₃C₆H₂).

CpCp*Hf(SiH₂CH₂Ph)Cl (13). PhCH₂SiH₃ (0.093 mL, 0.66 mmol), **2** (0.40 g, 0.60 mmol), and benzene (15 mL) were stirred together in a Schlenk flask for 2 h under ambient laboratory conditions. Removal of volatiles, extraction with pentane (30 mL), and concentration and cooling of the extract gave a yellow viscous oil (solid at -40 °C) in 71% yield. Anal. Calcd for $C_{22}H_{29}ClSiHf: C, 49.4$; H, 5.46. Found: C, 49.1; H, 5.43. IR (neat, CsI, cm⁻¹): 3070 m, 3050 m, 3020 m, 2970 m, 2900 s, 2860 m, 2050 s (Si-H), 1600 s, 1490 s, 1200 s, 1150 s, 1060 m, 1020 s, 930 s, 905 m, 815 s, 785 m, 745 s, 726 s, 700 s, 650 m, 610 m, 538 w, 470 m, 400 w, 340 m, 316 s. ¹H NMR (benzene- d_6 , 22 °C): δ 1.79 (s, 15 H, C₅Me₅), 2.40 (m, 2 H, SiCH₂Ph), 4.27 (m, 1 H, SiH), 4.45 (m, 1 H, SiH), 5.73 (s, 5 H, C₅H₅), 6.98 (t, J = 7.8 Hz, 1 H, *p*-C₆H₅), 1³Cl¹H₁ NMR (benzene- d_6 , 22 °C): δ 12.01 (C₅Me₅), 25.80 (SiCH₂Ph), 1^{11.19} (C₅H₅), 119.02 (C₅Me₅), 114.63, 123.95, 128.44, 146.84 (CH₂-C₆H₅).

CpCp*Hf(SiH₂Cy)Cl (14). To 2 (0.40 g, 0.60 mmol) in benzene (20 mL) was added CySiH₃ (0.086 mL, 0.66 mmol) via syringe. Stirring for 2 h under ambient fluorescent room lighting resulted in a yellow solution. Removal of volatiles, extraction with pentane (30 mL), and concentration and cooling of the extract gave yellow crystals (mp 103–105 °C) in 76% yield (0.24 g). Anal. Calcd for C₂₁H₃₃ClSiHf: C, 47.8; H, 6.31. Found: C, 47.4; H, 6.12. IR (Nujol, CsI, cm⁻¹): 2030 s (Si–H), 1470 w, 1440 m, 1170 w, 1090 w, 1065 w, 1015 m, 991 m, 930 s, 870 m, 860 w, 850 w, 810 s, 790 s, 735 m, 340 m, 315 m. UV-vis (pentane, nm): 223 (4700), 251 (4200), 385 (750). ¹H NMR (benzene-d₆, 22 °C): δ 116–2.23 (m, 11 H, Cy), 1.81 (s, 15 H, C₅Me₅), 4.04 (dd, J_{HH} = 1.2, 2.7 Hz, 1 H, SiH), 4.20 (dd, J_{HH} = 1.2, 2.7 Hz, 1 H, SiH), 5.78 (s, 5 H, C₅H₅). ¹³Cl¹H} NMR (benzene-d₆, 22 °C): δ 12.01 (C₅Me₅), 27.49, 29.34, 32.92, 35.65 (Cy), 111.03 (C₅H₅), 118.81 (C₅Me₅).

CpCp*Hf(SiHPh₂)Cl (15). Diphenylsilane (0.12 g, 0.66 mmol), **2** (0.40 g, 0.60 mmol), and benzene (15 mL) were stirred together for 2 days under ambient fluorescent room lighting. Removal of volatiles, extraction with pentane (30 mL), and concentration and cooling (-40 °C) of the extract gave yellow crystals (mp 129-131 °C) in 64% yield (0.23 g). Anal. Calcd for $C_{27}H_{31}$ CISiHf: C, 54.3; H, 5.23. Found: C, 54.2; H, 5.45. IR (neat, CsI, cm⁻¹): 2020 m (Si-H), 1425 m, 1100 w, 1065 w, 1021 w, 1010 w, 820 s, 723 s, 700 m, 490 w, 455 w, 400 w, 340 w, 313 w. UV-vis (pentane, nm): 225 (11 165), 263 (9740), 390 (1015). ¹H NMR (benzene-d₆, 22 °C): δ 1.75 (s, 15 H, C₅Me₅), 5.60 (s, 1 H, SiH), 5.70 (s, 5 H, C₅H₅), 7.12 (m, 2 H, *p*-C₆H₅). ¹³Cl¹H} NMR (benzene-d₆, 22 °C): δ 1.219 (C₅Me₅), 111.80 (C₅H₅), 119.58 (C₅Me₅), 127.41, 127.96, 136.85, 145.25 (SiHPh₂).

CpCp*Hf(SlHPhMe)Cl (16). Phenylmethylsilane (0.08 g, 0.66 mmol), **2** (0.40 g, 0.60 mmol), and benzene (15 mL) were stirred together for 1.5 days under ambient fluorescent room lighting. Removal of volatiles, extraction with pentane (30 mL), and concentration and cooling

(-40 °C) of the extract gave yellow crystals (mp 128-130 °C) in 64% yield (0.21 g). Two diastereomers were formed in a 7:5 ratio. Anal. Calcd for C22H29ClSiHf: C, 49.4; H, 5.46. Found: C, 49.1; H, 5.35. IR (Nujol, CsI, cm⁻¹): 2040 s (Si-H, major product), 2000 s (Si-H, minor product), 1480 m, 1425 m, 1258 w, 1238 m, 1100 m, 1062 w, 1020 s, 1010 m, 860 s, 810 s, 728 s, 698 s, 682 w, 655 m, 630 w, 458 w, 390 w, 340 m, 315 m. ¹H NMR (benzene- d_6 , 22 °C) for major product: δ 0.58 (d, J = 4.5 Hz, 3 H, SiMe), 1.81 (s, 15 H, C₅Me₅), 5.31 (q, J =4.5 Hz, 1 H, SiH), 5.60 (s, 5 H, C₅H₅), 7.17 (m, 1 H, p-C₆H₅), 7.31 (m, 2 H, m-C₆H₅), 7.78 (d, J = 6.6 Hz, 2 H, o-C₆H₅). ¹H NMR (benzene- d_6 , 22 °C) for minor product: δ 0.81 (d, J = 4.5 Hz, 3 H, SiMe), 1.79 (s, 15 H, C₅Me₅), 5.23 (q, J = 4.5 Hz, 1 H, SiH), 5.70 (s, 5 H, C₅H₅), 7.17 (m, 1 H, p-C₆H₅), 7.31 (m, 2 H, m-C₆H₅), 7.72 (d, J = 6.6Hz, 2 H, o-C₆H₅). ¹³C¹H NMR (benzene- d_6 , 22 °C) for major product: $\delta - 1.20$ (SiMe), 12.13 (C₅Me₅), 111.20 (C₅H₅), 118.96 (C₅Me₅), 127.15, 127.58, 135.59, 147.40 (SiHPh₂). ${}^{13}C{}^{1}H{} NMR$ (benzene- d_6 , 22 °C) for minor product: δ 2.75 (SiMe), 12.18 (C₅Me₅), 111.69 (C₅H₅), 119.24 (C₅Me₅), 127.35, 127.76, 135.70, 148.27 (SiHPh₂). ²⁹Si NMR (benzene- d_6 , 22 °C): δ 21.75 (d, J_{SiH} = 153 Hz, major product); 25.10 (d, J_{SiH} = 153 Hz, minor product).

CpCp*Hf(SiHPhSiH2Ph)Cl (17). The method for compound 16 was employed using PhH₂SiSiH₂Ph (0.16 mL, 0.66 mmol), benzene (15 mL), and 2 (0.40 g, 0.60 mmol) to obtain a yellow viscous oil (solid at -40 °C) in 65% yield. A mixture of two diastereomers (A and B) were isolated in a 1:1 ratio. The reaction of 2 equiv of 2 with PhH₂SiSiH₂Ph gave the same result; no [CpCp*Hf(Cl)SiHPh]₂ was observed. Anal. Calcd for C27H33ClSi2Hf: C, 51.7; H, 5.30. Found: C, 51.2; H, 5.07. IR (neat, CsI, cm⁻¹): 3060 m, 3040 m, 2980 m sh, 2940 m, 2900 s, 2860 m sh, 2100 s and 2040 s (Si-H, A and B), 1950 w, 1880 w, 1820 w, 1720 vw, 1640 w, 1580 w, 1560 w, 1480 m, 1440 m sh, 1426 s, 1380 s, 1330 w, 1300 w, 1260 w, 1190 w, 1160 w, 1105 m, 1065 m, 1025 m, 1013 m, 1000 w, 920 s, 800 s, 720 s, 625 m, 598 m sh, 485 w, 450 w, 380 m, 315 m. ¹H NMR (benzene-d₆, 22 °C): δ 1.79 (s, 30 H, C₅Me₅, A and B), 4.65-4.92 (m, 6 H, SiH, SiH₂, A and B), 5.73 (s, 5 H, C₅H₅, A), 5.76 (s, 5 H, C₅H₅, B), 7.10 (m, 4 H, p-C₆H₅, A and B), 7.19 (m, 8 H, m-C₆H₅, A and B), 7.71 (m, 8 H, o-C₆H₅, A and B). ¹³C[¹H] NMR (benzene-d₆, 22 °C): δ 12.26 (C₅Me₅, A and B), 111.68, 111.98 (C₅H₅, A and B), 119.78, 119.83 (C, Me, A and B), 127.30, 127.41, 127.68, 127.84, 127.95, 128.14, 128.74, 128.98, 135.66, 136.22, 136.35, 136.50, 137.02, 137.23, 142.89, 143.66 (C6H5, A and B). ²⁹Si NMR (benzene-d6, 22 °C): δ -9.05 and -9.86 (d, J_{SiH} = 152 Hz, HfS/HPhSiH₂Ph, A and B), -43.91 and -50.43 (t, $J_{SiH} = 183$ Hz, HfSiHPhSiH₂Ph, A and B).

1,4-[CpCp*Hf(Cl)SiH_{2l2}C₆H₄ (19). To a benzene (20 mL) solution of **2** (0.40 g, 0.60 mmol) was added *p*-H₃SiC₆H₄SiH₃ (0.048 mL, 0.30 mmol). Stirring for 2 h under ambient fluorescent room lighting resulted in a turbid yellow solution and precipitation of a solid. Removal of volatiles, washing with pentane, and drying under reduced pressure afforded a sparingly soluble yellow solid (mp >300 °C) in 39% yield (0.23 g). Anal. Calcd for C₃₆H₄₈Cl₂Si₂Hf₂: C, 44.8; H, 5.01. Found: C, 44.9; H, 5.03. IR (Nujol, CsI, cm⁻¹): 2040 s (Si-H), 1115 w, 1060 w, 1028 m, 1010 m, 910 s, 810 s, 755 s, 480 w, 340 w. ¹H NMR (benzene-d₆, 22 °C): δ 1.80 (s, 30 H, C₅Me₅), 4.78 (s, 2 H, SiH), 5.26 (s, 2 H, SiH), 5.66 (s, 10 H, C₅H₅), 7.95 (s, 2 H, C₆H₄). 7.96 (s, 2 H, C₆H₄). ¹³Cl¹H} NMR (benzene-d₆, 22 °C): δ 11.91 (C₅Me₅), 111.60 (C₅H₅), 118.87 (C₅Me₅), 128.54, 136.08 (C₆H₄). NMR data for CpCp*Hf-(SiH₂C₆H₄SiH₃)Cl (18) were obtained by monitoring the reaction of p-H₃SiC₆H₄SiH₃ in benzene-d₆. ¹H NMR (benzene-d₆, 22 °C) for 18: δ 1.79 (s, 15 H, C₅Me₅), 4.29 (s, 3 H, SiH₃), 4.62 (d, ²J_{HH} = 1.8 Hz, 1 H, SiH), 5.08 (d, ²J_{HH} = 1.8 Hz, 1 H, SiH), 5.59 (s, 5 H, C₅H₅), 7.49 (d, J = 7.5 Hz, 2 H, C₆H₄), 7.79 (d, J = 7.5 Hz, 2 H, C₆H₄). ¹³Cl¹H} NMR (benzene-d₆, 22 °C) for 18: δ 11.90 (C₅Me₅), 135.18, 135.60, 136.41, 145.95 (C₆H₄).

2,5-[CpCp*Hf(Cl)SiH₂]₂C₄H₂S (20). To a benzene (20 mL) solution of **2** (0.40 g, 0.60 mmol) was added 2,5-H₃Si(C₄H₂S)SiH₃ (0.049 mL, 0.30 mmol). Stirring for 3 h under ambient fluorescent room lighting resulted in a yellow solution. Removal of volatiles, washing with pentane, and drying under reduced pressure afforded a yellow solid (mp 185–187 °C dec) in 40% yield (0.23 g). Anal. Calcd for $C_{34}H_{46}Cl_2Si_2SHf_2$: C, 42.06; H, 4.78. Found: C, 42.06; H, 4.89. IR (Nujol, CSI, cm⁻¹): 2040 s (Si-H), 1260 w, 1200 w, 1060 w, 1020 m, 1010 m, 990 m, 952 w, 915 s, 810 s, 776 s, 490 w, 458 m, 400 w, 340 m, 314 m. ¹H NMR (benzene-d₆, 22 °C): δ 1.81 (s, 30 H, C₅Me₅), 5.00 (s, 2 H, SiH), 5.42 (s, 2 H, SiH), 5.75 (s, 10 H, C₅H₅), 11.90 (C₅H₅), 119.21 (C₅Me₅), 138.57, 145.21 (C₄H₂S).

Kinetics of the Reaction of 2 with Phenylsilane. Scaled NMR tubes containing 2 (ca. 32 mg, 0.048 mmol), phenylsilane (10, 20, 30, or 40 equiv), ferrocene (7.4 mg, 0.04 mmol), and benzene- d_6 (0.4 mL) were used in the kinetic runs. The reaction was followed by ¹H NMR spectroscopy by monitoring the disappearance of the Cp* resonance of 2 and

the appearance of $HSi(SiMe_3)_3$ relative to ferrocene. The kinetics were pseudo-first-order for over 3 half-lives. The linear plots of k_{obsd} vs [PhSiH₃], which intercepted the origin, were used to obtain the second-order rate constants.

Reaction of 2 with 'BuBr. A septum-capped 5-mm NMR tube was charged with 2 (20 mg, 0.030 mmol), 'BuBr (0.007 mL, 0.06 mmol), and benzene- d_6 (0.4 mL). The tube was placed under ambient fluorescent room lighting for 24 h (76% conversion, as judged by the amount of 2 remaining). The ¹H NMR spectrum showed resonances asignable to BrSi(SiMe₃)₃ (25%), a mixture of CpCp*HfCl₂ [¹H NMR δ 1.81 (s, C₅H₅), 5.87 (s, C₅Me₅)], CpCp*HfBr₂ [¹H NMR δ 1.84 (s, C₅H₅), 5.88 (s, C₅Me₅)], and CpCp*HfBrCl [¹H NMR δ 1.82 (s, C₅H₅), 5.88 (s, C₅Me₅)] (25%, 1:1:2), and 'BuH (50%) ['H NMR δ 0.85 (d, J = 6.6 Hz, 'BuH), 0.90 (m, 'BuH)]. HSi(SiMe₃)₃ was not observed.

Reaction of 8 with p**-BrC**₆**H**₄**SIH**₃**.** A septum-capped 5-mm NMR tube was charged with 8 (20 mg, 0.038 mmol), p-BrC₆**H**₄Si**H**₃ (0.006 mL, 0.04 mmoi), and benzene- d_6 (0.4 mL). The tube was placed under ambient fluorescent room lighting for 24 h (60% conversion, as judged by the amount of 8 remaining). The ¹H NMR spectrum showed a mixture of CpCp^{*}HfCl₂, CpCp^{*}HfBr₂, and CpCp^{*}HfBrCl in a ratio of 1:1:2 (50% total) and a mixture of PhSiH₃ and 4,4'-(H₃Si)₂C₆H₄C₆H₄ [¹H NMR δ 4.29 (s, 6 H, SiH₃), 7.34 (d, J = 8.1 Hz, 4 H, biphenyl)] in a ratio of 10:3 (50% total).

Reaction of 2 with p**-BrC**₆**H**₄**SiH**₃ **and** p**-ClC**₆**H**₄**SiH**₃**.** A septumcapped 5-mm NMR tube was charged with 2 (20 mg, 0.030 mmol), p-BrC₆H₄SiH₃ (0.004 mL, 0.03 mmol), and benzene- d_6 (0.4 mL). The tube was placed under ambient fluorescent room lighting for 24 h (50% conversion, as judged by the amount of 2 remaining). The ¹H NMR spectrum showed resonances assignable to BrSi(SiMe₃)₃ [¹H NMR δ 0.023 (s, SiMe₃)] (25%), a mixture of CpCp*HfCl₂, CpCp*HfBr₂, and CpCp*HfBrCl (25%, 1:1:2 ratio), and a mixture of 4,4'-(H₃Si)₂C₆H₄C₆H₄ and PhSiH₃ in a ratio of 3:10 (50% total). HSi-(SiMe₃)₃ was not observed in this reaction.

For the reaction with p-ClC₆H₄SiH₃, analogous conditions were employed and the tube was placed under ambient fluorescent room lighting for 2 days (100% conversion). The ¹H NMR spectrum showed resonances assignable to ClSi(SiMe₃)₃ [¹H NMR δ 0.22 (s, SiMe₃)] (25%), CpCp*HfCl₂ (25%), and a mixture of 4,4'-(H₃Si)₂C₆H₄C₆H₄ and PhSiH₃ in a ratio of 3:10 (50%). HSi(SiMe₃)₃ was not observed.

CpCp*Hf[SiH₂(p-Tol)]Br (21). To a benzene (15 mL) solution of CpCp*Hf[Si(SiMe₃)₃]Br (0.43 g, 0.61 mmol) was added *p*-MeC₆H₄SiH₃ (0.093 mL, 0.66 mmol). Stirring for 1.5 under ambient fluorescent room lighting resulted in a yellow solution. Removal of volatiles, extraction with pentane (30 mL), and concentration and cooling of the pentane extract gave yellow crystals (mp 120–122 °C) in 74% yield (0.26 g). Anal. Calcd for C₂₂H₂₉BrSiHf: C, 45.6; H, 5.04. Found: C, 44.8; H, 5.42. IR (Nujol, CSI, cm⁻¹): 2035 s (Si–H), 1306 w, 1255 w, 1186 w, 1112 w, 1090 w, 1065 w, 1023 m, 1010 m, 916 s, 820 s, 775 s, 700 m, 625 m, 606 w, 598 w, 480 w, 400 w, 340 m. ¹H NMR (benzene-*d*₆, 22 °C): δ 1.83 (s, 15 H, C₅Me₅), 2.19 (s, 3 H, *p*-Me), 4.58 (d, ²*J*_{HH} = 1.2 Hz, 1 H, SiH), 5.13 (d, ²*J*_{HH} = 1.2 Hz, 1 H, SiH), 5.67 (s, 5 H, C₅H₅), 7.12 (d, *J* = 7.5 Hz, 2 H, C₆H₄), 7.78 (d, *J* = 7.5 Hz, 2 H, C₆H₄). ¹³Cl¹H} NMR (benzene-*d*₆, 22 °C): δ 12.27 (C₅Me₅), 21.00 (p-Me), 112.00 (C₅H₅), 119.23 (C₃Me₅), 128.80, 136.81, 137.72, 139.11 (MeC₆H₄).

CpCp*Hf(SiH₂CH₃)Cl (23). To a benzene (20 mL) solution of 2 (0.50 g, 0.76 mmol) was added HSi(OMe)₂Me (0.94 mL, 7.60 mmol). Stirring for 20 h (under a static atmosphere of nitrogen to prevent the loss of gaseous CH₃SiH₃) under ambient fluorescent room lighting resulted in a dark yellow solution. Removal of volatiles, extraction with pentane (30 mL), and concentration and cooling (-40 °C) of the extract afforded yellow crystals (mp 108-110 °C dec) in 65% yield (0.23 g). Anal. Calcd for C₁₆H₂₅ClSiHf: C, 41.8; H, 5.49. Found: C, 41.4; H, 5.38. IR (Nujol, CsI, cm⁻¹): 2060 s (Si-H), 2040 s, 1482 m sh, 1260 vw, 1240 m, 1160 w sh, 1140 vw, 1065 w, 1020 s sh, 1010 s, 940 s, 860 s, 825 s, 810 s sh, 695 m, 668 m, 585 vw, 470 vw, 425 w, 405 w, 343 m, 305 m. ¹H NMR (benzene- d_6 , 22 °C): δ 0.64 (t, ³ J_{HH} = 4.8 Hz, 3 H, SiH₂CH₃), 1.80 (s, 15 H, C₅Me₅), 4.34 (q, ${}^{3}J_{HH} = 4.8$ Hz, 1 H, SiH), 4.59 (q, ${}^{3}J_{HH} = 4.8$ Hz, 1 H, SiH), 5.74 (s, 5 H, C₅H₅). ${}^{13}C{}^{1}H{}$ NMR (benzene- d_{6} , 22 °C): δ -3.43 (SiH₂CH₃), 11.96 (C₅Me₅), 111.20 (C₅H₅), 118.79 (C_5Me_5). The complex 23 slowly decomposed at room temperature in benzene- d_6 solution to give CpCp*HfHCl and a benzene-insoluble polysilane, presumably (-SiHMe-),

CpCp*Hf(SiH₃)Cl (24). Excess trimethoxysilane (ca. 2 mL) was syringed into a benzene solution of 2 (0.50 g, 0.76 mmol), and the resulting mixture was stirred for 18 h (under a static atmosphere of nitrogen to prevent the loss of gaseous SiH₄). Removal of volatiles, extraction with pentane (30 mL), and concentration and cooling (-40 °C) of the extract gave 0.24 g of a light-yellow solid. As determined by

¹NMR spectroscopy, the solid was a mixture of CpCp*Hf(SiH₃)Cl (60%), CpCp*Hf(OMe)Cl (15%), and CpCp*HfCl₂ (25%). The CpCp*HfCl₂ probably forms via reactions with chlorosilanes, which are added to commercial HSi(OMe)₃ to inhibit disproportionation. IR (Nujol, CsI, cm⁻¹): 2070 (Si-H). ¹H NMR (benzene-d₆, 22 °C): δ 1.80 (s, 15 H, C₅Me₅), 3.90 (s, 3 H, SiH₃), 5.73 (s, 5 H, C₅H₅). ¹³C{¹H} NMR (benzene-d₆, 22 °C): δ 11.98 (C₅Me₅), 111.53 (C₅H₅), 119.08 (C₅Me₅). The complex 24 slowly decomposed at room temperature in benzene-d₆ solution to give CpCp*HfHCl and a benzene-insoluble product, presumably (-SiH₂-)_n.

X-ray Structure Determinations of 2 and 8. For 2: A light yellow crystal of approximate dimensions $0.14 \times 0.4 \times 0.4$ mm was mounted under N₂ in a random orientation in a glass capillary and flame-sealed. Centering of 24 randomly selected reflections with $15^{\circ} \le 2\theta \le 30^{\circ}$ provided unit cell data. The selection of the triclinic cell was confirmed by axial photographs. Data were collected with $\theta/2\theta$ scans (3° $\leq 2\theta \leq$ 48°), at a variable scan speed of 3.00-1.95 deg min⁻¹, using Mo K α radiation ($\lambda = 0.71073$ Å), on a Siemens R3m/V automated diffractometer equipped with a highly ordered graphite monochromator. Of the 10841 reflections measured, 8987 were independent ($R_{int} = 2.63\%$), and 5289 were considered observed $(F_{o} > 6\sigma(F))$. The data were corrected for Lorentz and polarization effects and for a decay in the intensity of three check reflections of approximately 11%. A semiempirical absorption correction based on the Ψ scan method was employed. The minimum and maximum transmission factors for the correction were 0.284 and 0.669, respectively. The structure was solved by direct methods and refined by full-matrix least-squares methods. Refinement of a solution in the space group P1 did not provide a chemically reasonable structure. All non-hydrogen atoms were refined anisotropically. The hydrogen atoms were placed in idealized, calculated positions (d(C-H) = 0.96 Å), with a fixed thermal parameter approximately equal to 1.2 times the isotropic thermal parameter of the attached carbon atom. $R_F = 4.58$, $R_{wF} = 5.32$, GOF = 1.33, data/parameter = 9.8, largest $\Delta/\sigma = 0.003$, largest difference peak = $1.93 \text{ e} \text{ Å}^{-3}$, located 1.37 Å from Hf(1).

For 8: A yellow crystal of approximate dimensions $0.24 \times 0.3 \times 0.32$ mm was mounted under N₂ in a random orientation in a glass capillary and flame-sealed. Centering of 22 randomly selected reflections with 15° $\leq 2\theta \leq 30^{\circ}$ provided unit cell data. The selection of the monoclinic cell was confirmed by axial photographs. Data were collected with ω scans $(3^{\circ} \le 2\theta \le 48^{\circ})$, at a variable scan speed of 3.00-19.5 deg min⁻¹, using Mo K α radiation ($\lambda = 0.71073$ Å), on a Siemens R3m/V automated diffractometer equipped with a highly ordered graphite monochromator. Of the 3776 reflections measured, 3293 were independent ($R_{int} = 1.94\%$), and 2173 were considered observed $(F_{o} > 6\sigma(F))$. The data were corrected for Lorentz and polarization effects and for a decay in the intensity of three check reflections of approximately 6%. A semiempirical absorption correction based on the Ψ scan method was employed. The minimum and maximum transmission factors for the correction were 0.585 and 0.963, respectively. Systematic absences uniquely determined the space group $P2_1/c$. The structure was solved by direct methods and refined by full-matrix least-squares methods. All non-hydrogen atoms were refined anisotropically. The phenyl ring was constrained to be a rigid hexagon (d(C-C) = 1.42 Å). The silicon-bound hydrogen atoms H(A) and H(B) were located by difference Fourier maps and refined. All other hydrogen atoms were placed in idealized, calculated positions (d(C-H) = 0.96 Å), with a fixed thermal parameter approximately equal to 1.2 times the isotropic thermal parameter of the attached carbon atom. $R_F = 3.07, R_{wF} = 3.35, \text{GOF} = 1.12, \text{data/parameter} = 10.2, \text{largest } \Delta/\sigma$ = 0.005, largest difference peak = 0.64 e Å⁻³, located 1.09 Å from Hf. All calculations were performed with the Siemens SHELXTL PLUS computing package (Siemens Analytical X-ray Instruments, Inc., Madison, WI).

Acknowledgment is made to the National Science Foundation and to Chevron Research Company for support of this work. We also thank Mike Sailor and David Roise for help in obtaining fluorescence spectra for 2, and Jim McCusker and Bill Trogler for helpful discussions. T.D.T. thanks the Alfred P. Sloan Foundation for a research fellowship (1988-1992), Union Carbide for an Innovation Recognition Program Award (1991-1992), and the Mobil Foundation for a contribution.

Supplementary Material Available: Tables of crystal data, data collection, and refinement parameters, bond distances and angles, anisotropic displacement parameters, and hydrogen atom coordinates for 2 and 8 (22 pages); listings of observed and calculated structure factors for 2 and 8 (45 pages). Ordering information is given on any current masthead page.